Efficiency Gains Through Catalyst and Process Technology Advancements in the Refining and Petrochemical/Chemical Industries

Segment Report 3
Assessment: Process Intensification

A Multi-Client Study Series

JANUARY 2010
The information, opinions, and recommendations presented in this study are based on knowledge available to the authors at the time of writing. The Catalyst Group Resources makes no representations or warranties, express or implied, with respect to the contents of the study, except that the information contained herein is the result of the application of the best methods of technical investigation and research, and represents fairly the results of such investigation and research. Any evaluation of materials procedures, and methods on this topic should include a study of good manufacturing practices and a review of economic, safety, and environmental considerations. In particular, any operation with environmental and/or safety ramifications (waste treatment, for example) must comply fully with local, state, and federal regulations.
CONTENTS

SECTION I. INTRODUCTION ... 1
 A. ASSESSMENT: PROCESS INTENSIFICATION 2
 B. SCOPE AND METHODOLOGY .. 3
 C. THE NEED FOR THE STUDY SERIES 4

SECTION II. BACKGROUND – ENVIRONMENT 7
 A. BACKGROUND ... 7
 B. ENVIRONMENT – PROCESS INTENSIFICATION (PI) 10
 C. AUTHOR TEAM ... 13
 D. REFERENCES ... 13

SECTION III. TECHNOLOGY ASSESSMENT 15
 A. METHODS FOR PROCESS INTENSIFICATION 15
 1. Structuring from the macro- to the micro-scale 16
 2. High-G .. 16
 3. Multifunctionality .. 17
 4. Hybrid methods ... 17
 5. Alternative forms and sources of energy 18
 6. Novel methods of process / plant development and operation 19
 B. MIXING DEVICES ... 19
 1. Static mixers .. 20
 2. Gas-liquid ejectors / supersonic inline mixers 24
 3. Rotor-stator mixers .. 25
 4. Jet impingement mixers .. 25
 5. Micro-mixers ... 25
 C. HEAT TRANSFER DEVICES .. 26
 1. Compact heat exchangers ... 26
 2. Micro-channel heat exchangers .. 29
 D. REACTORS .. 30
 1. Static mixer reactors .. 30
 2. Structured reactors ... 31
3. Monolithic catalysts / reactors ... 32
4. Micro-reactors .. 35
5. Heat-exchanger reactors .. 41
6. Supersonic gas-liquid reactors and jet impingement reactors............ 42
7. Rotating packed bed reactors ... 42
8. Spinning disc reactors ... 44
9. Rotating fluidized bed reactors - rotating fluidization chamber 46
10. Rotating fluidized beds in a static geometry ... 48
11. Reactor concepts combining endo- and exothermic reactions.......... 50
12. Reactive separations .. 51
13. Reactive extrusion .. 55
E. SEPARATIONS .. 55
 1. Structured packing distillation, rope packing, cross-flow packing 55
 2. Rotating packed beds, centrifugal adsorbers and spinning discs 59
 3. Extractive distillation ... 62
 4. Adsorptive distillation .. 62
 5. Membrane distillation ... 62
 6. Extractive crystallization ... 63
 7. Membrane absorption and stripping ... 64
 8. Micro-separators .. 64
 9. Membrane gas/liquid contactors .. 65
F. OTHERS – PUMPS AND COMPRESSORS ... 66
G. COMPACT UTILITY SYSTEMS .. 68
H. CONCLUSIONS AND PERSPECTIVES .. 68
I. REFERENCES .. 69

SECTION IV. COMPETITIVE / STRATEGIC ASSESSMENT 95
A. INTRODUCTION .. 95
 1. Highlights of potential opportunities / benefits of PI 95
 2. The “go to market” strategy for PI ... 95
B. PI COMMERCIALIZATION - VISION .. 95
C. PI PROJECTS / CASE STUDIES IN PROCESS INTENSIFICATION 96
 1. (Petro)chemicals .. 96
D. DISCUSSION, ASSESSMENT AND CONCLUSIONS 133
E. REFERENCES ... 133

SECTION V. CONCLUSIONS AND RECOMMENDATIONS 139

FIGURES

II-A-1 Petroleum refining – total energy input and distribution 7
II-A-2 GTC Technology’s GT-BTX process scheme 9
II-B-1 Categories and examples of process intensification (Stankiewicz and Moulijn, 2000) ... 10
III-B-1 Static mixers .. 20
III-B-2 CompaX static mixer (Sulzer) .. 21
III-B-3 FlexReactor (BHR Group) ... 22
III-B-4 Comparison of mixer efficiencies. experimental conditions: CoV<0.05, V1/V2 ~ 1000, Re >10,000 ... 22
III-B-5 Gas-liquid ejector .. 24
III-B-6 Rotor-stator mixer .. 25
III-C-1 (a) Plate heat exchanger; (b) Plate-fin heat exchanger 27
III-C-2 (a) Micro-channel heat exchanger (Zess Inc.); (b) Printed circuit heat exchanger (Heatric) ... 29
III-D-1 Static Mixer Reactor (SMR) application to polymerization (Sulzer) 30
III-D-2 Zoneflow™ reactor for methane steam reforming (Tribute Creations) 32
III-D-3 Monoliths ... 33
III-D-4 Falling film micro-reactor (Fraunhofer ICT Pfinztal) 35
III-D-5 Micro-channel reactor (Velocys). Application to methane steam reforming, Fischer-Tropsch synthesis (figure), and ethane oxidation to ethylene .. 40
III-D-6 Rotating packed bed reactor .. 43
III-D-7 Spinning disc reactor .. 45
III-D-8 Rotating fluidized bed (rotating reactor) ... 47
III-D-9 Rotating fluidized bed in a static geometry .. 48
III-D-10 FCC process intensification using a rotating fluidized bed in a static geometry ... 49
III-D-11 Katapak-S packing for reactive distillation (Sulzer) 51
III-D-12 (a) Various membrane-reactor systems. (b) Water-gas shift membrane reactor. ... 54
III-E-1 Super X-Pack (Nagaoka Int. Corp.) ... 55
III-E-2 Multi-mesh column packings .. 56
III-E-3 (a) Heat pump assisted distillation column; (b) Internally heat-integrated distillation column (HIDiC) between part of the rectifying section and part of the stripping section. (Nakaiwa et al., 2003) .. 57
III-E-4 Operation of the heat transfer panels placed in between trays in the annular stripping section. (Olujić et al., 2006) ... 57
III-E-5 Thin film distillation (left) and short-path distillation (right) 59
III-E-6 (a) Membrane distillation; (b) vacuum membrane distillation (Petro SEP) ... 63
III-E-7 Gas-liquid membrane contactors (Meyer et al., 2002) 65
III-F-1 Competitive advantage and potential of the Ramgen Compressor 67
IV-C-1 Corning® Advanced-Flow™ glass reactor. Modular approach.
(a) Production bank with four identical reactors and distribution system [Braune et al. (2008)]. (b) Zeton Corning mobile multipurpose microreactor unit: feed, 3 liquids and 2 gases; ATEX EEx Zone II; -80 - +250°C; data collection; production up to 50 tpa ... 97
IV-C-2 Hazardous nitration reaction under Current Good Manufacturing Practice (cGMP) conditions (with DSM Pharma Chemicals for NicOx). Reactor made from 12 Corning® Advanced-Flow™ glass microstructures enabling the required mass and heat transfer functions (heat exchangers on each micro-structure are not shown). [Braune et al. (2008)] 99
IV-C-3 Investment cost comparison: Batch versus continuous flow Corning® Advanced-Flow™ glass microstructure reactor based process [Pissavini and Pinton (2009)]................................. 100

IV-C-4 Operating cost comparison: Batch versus continuous flow Corning® Advanced-Flow™ glass microstructure reactor based process [Pissavini and Pinton (2009)]................................. 101

IV-C-5 Modular approach in PI [Bottenberg (2009)]. .. 102

IV-C-6 Steam Methane Reforming (SMR) using Velocys microchannel reactor technology, with close integration of the exothermic catalytic combustion and endothermic steam methane reforming [McDaniel (2007a), Simmons (2008)].. 108

IV-C-8 Fischer-Tropsch synthesis. Liquid selectivity versus productivity. Comparison of conventional reactor technologies with Velocys microchannel reactor technology. [Mazanec (2007)]................................. 112

IV-C-9 Time line of Fischer-Tropsch synthesis Velocys microchannel reactor development. [Tonkovich et al. (2008)].. 112

IV-C-10 Comparison of deactivation rates between Oxford Catalysts Fischer-Tropsch catalyst and a catalyst used in the Syntroleum Fischer-Tropsch process (data of Syntroleum). [Atkinson and McDaniel (2009a)].. 114

IV-C-11 Fischer-Tropsch reactor productivity comparison [Tonkovich et al. (2008)].. 114

IV-C-12 Headwaters DCL process .. 116

IV-C-13 Shenhua DCL process ... 118

IV-C-14 Flowsheet of the Mobil MTG process [VII-Energy-D-Methanol]. 121

IV-C-15 Process description of ExxonMobil AGC-21 [Robertson (1999)]. 122

IV-C-16 ExxonMobil’s AGC-21: Relative productivity versus relative feed rate [Fiato et al. (2002)]. ... 123

IV-C-17 Schematic comparison of the conventional DME process and the JFE’s direct DME process [de Mestier du Bourg (2006)]............................ 125

IV-C-18 JFE direct DME process [de Mestier du Bourg (2006)]. 125

IV-C-19 (a) JFE Autothermal reformer; (b) JFE Slurry phase DME synthesis reactor. [Ohno (2007)].. 126

IV-C-20 Catalyst stability / life test. Reaction conditions in (b): 260°C, 5 MPa, W/F = 4 (g·h)/mol, molar ratio H₂ / CO = 1.0. [Ohno (2007)].... 128
IV-C-22	Economics for DME production from natural gas [Ohno (2007)]	130
IV-C-23	Economics for DME production from coal [Ohno (2007)]	131
IV-C-24	Unitel HyaWay autothermal system	132

TABLES

II-B-1	Examples of the Application of Process Intensification Strategies to Various Important Processes or Operations (The Catalyst Group Resources, 2003)	12
III-B-1	Static Mixer Selection (Etchells and Meyer, 2004)	23
IV-C-2	Potential General Issues with Microchannel Reactor Technology	107
IV-C-3	2005 Pilot Scale Demonstration Reactor Design and Performance [Mazanec (2007)]	108
IV-C-5	Fischer-Tropsch Reactor Comparison: Shell vs. Sasol vs. Velocys [Atkinson and McDaniel (2009a)]	110
IV-C-6	Fischer-Tropsch Reactor Comparison: Microchannel vs. Conventional [Atkinson and McDaniel (2009a)]	111
IV-C-7	2007-2009 Pilot Scale Demonstration Reactor Design and Performance [Tonkovich et al. (2008), Atkinson and McDaniel (2009a)]	113
IV-C-8	Fischer-Tropsch Synthesis: Comparison of Conventional and Microchannel Reactor Technology [Kilanowski et al. (2009)]	115
IV-C-9	Equivalent Fischer-Tropsch Performance Demonstrated at Multiple Scales [Kilanowski et al. (2009)]	115
IV-C-10	Most Important Characteristics of ICL and DCL	117
IV-C-11	Comparison of Direct- and Indirect Coal Liquefaction Technologies [Lepinski et al. (2009)]	119
IV-C-12	Comparison of Direct- and Indirect Coal Liquefaction Technologies [Lee(2008)]	120
IV-C-13	Comparison of DCL and ICL Economics (based on sub-bituminous coal at $ 1/mm BTU; for discussion purposes only) [Lepinski (2005)]	120
IV-C-14	Comparison of Direct- and Indirect DME Synthesis Processes [Ohno (2007)]	128
ORDER FORM AND SECRECY AGREEMENT

<table>
<thead>
<tr>
<th>Post-Publication Subscriber</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>_____ Segment 1 – Assessment: Separations/Membranes</td>
<td>$13,000</td>
</tr>
<tr>
<td>_____ Segment 2 – Assessment: Process Intensification</td>
<td>$13,000</td>
</tr>
<tr>
<td>_____ Segment 3 – Assessment: By-Product/Waste Minimization/Utilization</td>
<td>$13,000</td>
</tr>
<tr>
<td>_____ Segment 1, Segment 2 & Segment 3</td>
<td>$34,000</td>
</tr>
<tr>
<td>_____ Please enter our order for the Segment(s) to be delivered in PDF (Adobe Acrobat) format for use across our sites/locations for an additional $1,000 (each Segment).</td>
<td></td>
</tr>
<tr>
<td>_____ Please send us _____ additional printed copies @ $250 each.</td>
<td></td>
</tr>
</tbody>
</table>

In signing this order form our company agrees to hold this report(s) confidential and not make them available to subsidiaries unless a controlling interest (>50%) exists.

Signature: _______________________________ Date: _______________________________
Name: _______________________________ Title: _______________________________
Company: ___
Billing Address: ___
Shipping Address (no P.O. Boxes): ___

Express delivery services will not deliver to P.O. Boxes

City: ___________________________ State/Country: ___________________________
Zip/Postal Code: ___________________________ Phone: ___________________________
E-mail: __________________________________ Fax: ___________________________

This report and our study findings are sold for the exclusive use of the client companies and their employees only. No other use, duplication, or publication of this report or any part contained herein is permitted without the expressed written consent of The Catalyst Group Resources.