ADVANCES IN AROMATICS PRODUCTION

A technical investigation
commissioned by the members of the
Catalytic Advances Program

Client Private
August 2015
The Catalytic Advances Program (CAP)

The Catalytic Advances Program (CAP) is an information resource for research and development organizations in the petroleum, chemical, and polymer industries. By the direction of the member companies (through balloting and other interactive means), the program delivers a range of timely and insightful information and analyses which are accessible exclusively to members and protected by confidentiality agreements. The objective is to provide a technical update on commercially viable advances in catalysis as well as benchmark commercial advances in catalysis and process technology.

Members receive three in-depth CAP Technical Reports which are written and peer reviewed by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CAP Communications (delivered via e-mail) which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CAP Annual Meeting.

The Catalytic Advances Program (CAP) is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact Matthew A. Colquitt at Matthew.A.Colquitt@catalystgrp.com or +1.215.628.4447 (x1130).
CONTENTS

EXECUTIVE SUMMARY ... xiii

1. INTRODUCTION .. 1
 1.1 AUTHORS & CONTRIBUTORS.. 2
 1.2 REFERENCES.. 4

2. ADVANCES IN PROCESS TECHNOLOGY FOR AROMATICS PRODUCTION.......................... 5
 2.1 INTRODUCTION ... 5
 2.2 TRADITIONAL AROMATICS SOURCES .. 5
 2.2.1 Thermal Cracking .. 6
 2.2.2 Catalytic Reforming and Cracking ... 7
 2.3 NON-TRADITIONAL AROMATICS SOURCES ... 14
 2.3.1 Aromatization of LPG .. 15
 2.3.2 Aromatization of LCO/HCO .. 18
 2.3.3 Aromatization Of Olefins ... 19
 2.3.4 C1 to Aromatics .. 20
 2.3.5 Heavy Aromatics, Furan, and Isobutyl Conversion .. 24
 2.3.6 Bio-based Aromatics .. 27
 2.4 SUMMARY, IMPACT OF TECHNOLOGIES, AND CONCLUSIONS 31
 2.5 REFERENCES... 33

3. ADVANCES IN AROMATICS CONVERSION ... 37
 3.1 INTRODUCTION ... 37
 3.2 BENZENE DERIVATIVES .. 38
 3.2.1 Ethylbenzene and Styrene ... 39
 3.2.2 Cumene, Phenol, Acetone and Bisphenol A .. 43
 3.2.3 Cyclohexane, Cyclohexanone and Caprolactam .. 48
 3.2.4 Linear Alkylbenzene (LAB) ... 51
 3.3 TOLUENE DERIVATIVES .. 53
 3.3.1 Toluene Diisocyanate (TDI) .. 53
 3.3.2 Carbamates (Polyurethanes) .. 56
 3.4 XYLENE DERIVATIVES ... 56
 3.4.1 Terephthalic Acid .. 57
3.4.2 Phthalic Anhydride

3.5 TOLUENE HYDRODEALKYLATION TO BENZENE

3.6 TOLUENE DISPROPORTIONATION (TDP) TO BENZENE AND XYLENES

3.6.1 Selective Toluene Disproportionation to High Purity Benzene

3.7 C8 AROMATIC ISOMERIZATION

3.7.1 Ethylbenzene Dealkylation

3.7.2 Ethylbenzene Isomerization

3.8 AROMATICS TRANSALKYLATION

3.9 TOLUENE ALKYLATION

3.9.1 Selective Styrene Production

3.9.2 Selective para-Xylene Production

3.10 SUMMARY, IMPACT OF TECHNOLOGIES AND CONCLUSIONS

3.11 REFERENCES

4. ADVANCES IN AROMATIC SEPARATION

4.1 LIQUID-LIQUID EXTRACTION

4.1.1 Traditional Solvents

4.1.2 Ionic Liquids as Aromatic Solvents

4.2 EXTRACTIVE DISTILLATION

4.3 AROMATICS FRACTIONATION

4.3.1 Advanced Fractionation Flow Schemes for Aromatics

4.4 XYLENE PURIFICATION

4.4.1 Crystallization

4.4.2 Adsorption

4.4.3 Metaxylene Separation

4.5 XYLENE DERIVATIVE PURIFICATION

4.5.1 Terephthalic Acid and Isophthalic Acid Recovery and Purification

4.6 BROMINE INDEX REDUCTION IN BTX

4.7 SUMMARY AND RECOMMENDATIONS

4.7.1 Summary

4.7.2 Recommended Future Work

4.8 REFERENCES

5. INDEX

xxii |
FIGURES

Figure 2.1 Overview of a petrochemical complex showing BTX production from cracking and reforming ... 6
Figure 2.2 Proposed reaction mechanisms involved in aromatics production 10
Figure 2.3 Products distribution comparison for conventional and retrofitted petrochemical complexes (cPCC and rPCC) ... 12
Figure 2.4 UOP CCR Platforming Catalyst Advances ... 14
Figure 2.5 Dehydrocyclodimerization Reactions ... 16
Figure 2.6 UOP Cyclar Process Scheme .. 17
Figure 2.7 Representative Cyclar Yield .. 17
Figure 2.8 UOP LCO-X Process Scheme ... 18
Figure 2.9 Aromatization pathways of olefin over HZSM-5 ... 19
Figure 2.10 Various chemicals from syngas produced from methane reforming 21
Figure 2.11 Two-step process for economical production of green phenol 30
Figure 3.1 Global benzene and derivatives in 2013 (million tpy) 39
Figure 3.2 Oxidative dehydrogenation of EB to SM over supported gold nanoparticles 42
Figure 3.3 Increasing zeolite importance in cumene production 44
Figure 3.4 Novel route for caprolactam synthesis by Sumitomo Chemical/Versalis without ammonium sulfate formation ... 50
Figure 3.5 Flow scheme of UOP Detal-Plus process for linear alkylbenzene (LAB) synthesis ... 52
Figure 3.6 Steps in the production of toluene diisocyanates (TDI) and polyurethanes (PU). .. 55
Figure 3.7 Global production of polyurethane (PU) by region and product in 2012. 56
Figure 3.8 Typical xylene yields from heavy aromatics transalkylation using KBR's ATA process and SK proprietary catalyst ... 70
Figure 3.9 Toluene conversion and selectivity to styrene over different Cs-X zeolite catalysts ... 75
Figure 4.1 Liquid-liquid extraction from conceptual process design for aromatic/aliphatic separation with ionic liquids ... 88
Figure 4.2 Extractive distillation flow schematic .. 91
Figure 4.3 CGT GT-BTX flow scheme .. 92
Figure 4.4 Comparison of concepts for extractive distillation process (Diehl, 2006) 92
Figure 4.5 Liquid-liquid extraction (left) and extractive distillation (right) flowsheet 93
Figure 4.6 Conventional BTEX distillation flow schematic ... 94
Figure 4.7 Pressure cascade with toluene overhead vapor reboiling benzene tower 96
Figure 4.8 Xylene column heat network configuration ... 97
Figure 4.9 Dividing wall column ... 98
Figure 4.10 A possible arrangement of an extract or raffinate product from a sorbex process feeding a pressure cascaded pair of towers .. 99
Figure 4.11 A possible arrangement of Parex raffinate and extract products feeding two dividing wall columns where the overhead of one column provides the reboiler heat to the other column. This is for a heavy desorbent .. 99
Figure 4.12 Heat recovery system for xylene splitter overhead vapor .. 101
Figure 4.13 Block flow diagram of ExxonMobil PX crystallization process 102
Figure 4.14 Flow scheme of Parex unit. Unit consists of 2 chambers each with 12 beds, a rotary valve and the extract and raffinate columns ... 104
Figure 4.15 Continued parex adsorbent and process development .. 105
Figure 4.16 Control scheme and process line arrangement for Eluxyl simulated moving bed adsorption process .. 105
Figure 4.17 The process developed by Sulzer Chemtech for the purification of m-xylene is characterized by three steps: separation of ethyl benzene, concentration of m-xylene and the purification of m-xylene ... 106
Figure 4.18 Flow scheme of the MX-Sorbedx process by UOP .. 107
Figure 4.19 Dividing wall for MX sorbex. Extract feeds one side and the raffinate feeds the other. Note that this process uses a light desorbent .. 107
Figure 4.20 ExxonMobil Olgone Process .. 109
Figure 4.21 Axens Arofining™ flowsheet ... 110

TABLES

Table 1.1 Global Demand for BTX Aromatics and their Derivatives 1
Table 2.1 Selectivity Comparison for SiO₂-Al₂O₃ vs. Zeolite ... 9
Table 2.2 Products Compositions and Flow Rates of cPCC and rPCC Processes 12
Table 2.3 UOP CCR Platforming Catalyst Development .. 14
Table 3.1 Global Demand for BTX Aromatics and their Derivatives 37
Table 3.2 Technology Licensors for Ethylbenzene .. 40
Table 3.3 Technology Licensors for Styrene Monomer ... 41
Table 3.4 Technology Licensors for Cumene ... 44
Table 3.5 Product Selectivities of Benzene Alkylation with Propylene over Various Zeolites ... 45
Table 3.6 Technology Licensors for Phenol and Acetone .. 46
Table 3.7 Main Chemical Derivatives from Xylenes...57
Table 3.8 Technology Licensors for EB/Xylene Isomerization.................................65
Table 3.9 List of Commercial Processes for Transalkylation of Heavy Aromatics..........69
Table 3.10 Benefits of Side-chain Toluene Alkylation vs. Conventional Styrene Process72
Table 4.1 Summary of Xylene Properties Used in Separation Design........................102

SCHEMES

Scheme 3.1 Possible network of reactions in LAB synthesis over solid acid catalysts.......53
Scheme 3.2 Sequential oxidation process for para-xylene oxidation..............................59
Scheme 3.3 Reactions for ethylbenzene dealkylation and isomerization.......................66
Scheme 3.4 Reactions for xylene isomerization...67
Scheme 3.5 Toluene methylation to xylenes and styrene...71