ADVANCES IN CATALYTIC PRODUCTION OF OLEFINS

A technical investigation
commissioned by the members of the
Catalytic Advances Program (CAP)

Client Private
April 2012
(for the 2011 membership year)
The Catalytic Advances Program (CAP)

The Catalytic Advances Program (CAP) is an information resource for research and development organizations in the petroleum, chemical, and polymer industries. By the direction of the member companies (through balloting and other interactive means), the program delivers a range of timely and insightful information and analyses which are accessible exclusively to members and protected by confidentiality agreements. The objective is to provide a technical update on commercially viable advances in catalysis as well as benchmark commercial advances in catalysis and process technology.

Members receive three in-depth CAP Technical Reports which are written and peer reviewed by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CAP Communications (delivered via e-mail) which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CAP Annual Meeting.

The Catalytic Advances Program (CAP) is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact Matthew A. Colquitt at Matthew.A.Colquitt@catalystgrp.com or +1.215.628.4447 (x1130).
CONTENTS

EXECUTIVE SUMMARY ... xix

1. INTRODUCTION ... 1

2. OLEFIN PRODUCTION FROM PETROLEUM REFINING CRACKING PROCESSES .. 5

 2.1 GLOBAL MARKET: HISTORICAL AND FUTURE NEEDS .. 5

 2.1.1 World status of light olefins ... 5

 2.1.2 Light olefins production/demand ... 7

 2.1.3 Future needs ... 7

 2.2 ADVANCES IN OLEFINS FROM FCC PROCESSES .. 8

 2.2.1 Commercial impact .. 8

 2.2.2 Simplified technology description .. 9

 2.2.3 Announced and commercialized technology ... 11

 2.2.3.1 DCC process .. 12

 2.2.3.2 CPP process ... 13

 2.2.3.3 MIP-CGP process .. 13

 2.2.3.4 HS-FCC process .. 14

 2.2.3.5 PetroFCC and RxPro processes ... 14

 2.2.3.6 I-FCC process .. 15

 2.2.3.7 Maxofin process .. 16

 2.2.3.8 MILOS process .. 17

 2.2.3.9 PetroRiser process ... 17

 2.2.3.10 Other high-olefin FCC processes .. 18

 2.2.4 Process technology innovations ... 18

 2.2.5 Catalyst technology innovations .. 18

 2.2.6 Needs for technology improvements .. 20

 2.2.7 R&D advances .. 20

 2.3 ADVANCES IN OLEFINS FROM OTHER CATALYTIC CRACKING AND PYROLYSIS PROCESSES ... 21

 2.3.1 Commercial impact .. 21

 2.3.2 Simplified technology description .. 21
2.3.3 Announced and commercialized technology .. 22
 2.3.3.1 ACO process .. 22
 2.3.3.2 PCC process ... 23
 2.3.3.3 UOP patents ... 24
 2.3.3.4 Shanghai Research Institute (Sinopec) .. 24
 2.3.4 Process technology innovations .. 25
 2.3.5 Catalyst technology innovations ... 25
 2.3.6 Needs for technology improvements .. 27
 2.3.7 Potential impact of biomass to fuels processes .. 27
 2.3.8 R&D advances .. 28

2.4 ADVANCES IN OLEFINS FROM THERMAL CRACKING PROCESSES 28
 2.4.1 Commercial impact ... 28
 2.4.2 Simplified technology description ... 29
 2.4.3 Announced and commercialized technology .. 30
 2.4.3.1 Process technology innovations ... 30
 2.4.3.2 Thermocatalytic technology innovations .. 31
 2.4.3.3 Needs for technology improvements ... 32
 2.4.3.4 R&D advances ... 32

2.5 THIS TECHNOLOGY 10 YEARS FROM NOW ... 33
 2.5.1 High-olefin FCC process .. 33
 2.5.2 Catalytic naphtha cracking process .. 33
 2.5.3 Thermal cracking process ... 34

2.6 REFERENCES ... 34

3. OLEFIN PRODUCTION FROM DEHYDROGENATION PROCESSES 39
 3.1 BACKGROUND .. 39
 3.1.1 Introduction .. 39
 3.1.2 Historical perspective ... 40
 3.2 PROCESS CHEMISTRY, CATALYSTS, AND PROCESSES 43
 3.2.1 Catofin process offered by Lummus ... 45
 3.2.2 STAR process offered by Uhde .. 46
 3.2.3 Catalytic dehydrogenation process offered by Linde .. 49
 3.2.4 Fluidized bed technology offered by Snamprogetti .. 49
 3.2.5 Catalytic dehydrogenation processes offered by UOP 49
 3.2.6 Commercial prospects .. 52
3.3 OTHER DEHYDROGENATION TECHNOLOGIES .. 52
 3.3.1 Oxydehydrogenation .. 53
 3.3.2 Oxydehydrogenation by the selective oxidation of hydrogen 54
 3.3.3 Oxydehydrogenation of ethane .. 55
 3.3.4 Oxydehydrogenation of light alkanes .. 58
 3.3.5 Oxydehydrogenation of ethane and light alkanes with CO₂ 59
3.4 FUTURE DEVELOPMENTS .. 63
3.5 REFERENCES .. . 64

4. OLEFIN PRODUCTION FROM OTHER PROCESSES .. 69
 4.1 GLOBAL MARKET: HISTORICAL AND FUTURE NEEDS 69
 4.2 DRIVERS FOR NON-CLASSICAL ROUTES ... 69
 4.3 OLEFINS FROM ALCOHOLS ... 70
 4.3.1 Commercial impacts ... 70
 4.3.2 Simplified technology descriptions .. 71
 4.3.3 Announced and commercialized technologies for low molecular weight alcohols ... 72
 4.3.3.1 Competitive features and niche definition ... 72
 4.3.3.2 Process technology innovations .. 73
 4.3.3.3 Catalyst technology innovations ... 75
 4.3.3.4 Needs for technology improvements ... 75
 4.3.3.5 R&D advances ... 75
 4.3.3.6 This technology 10 years from now .. 76
 4.4 FISCHER-TROPSCH OLEFINS ... 76
 4.4.1 Commercial impact .. 76
 4.4.2 Renewable and biomass fuels impact ... 76
 4.4.3 Simplified technology descriptions .. 77
 4.4.3.1 Thermodynamics, kinetics, catalysis, other factors ... 77
 4.4.3.2 Reactors ... 78
 4.4.3.3 High-temperature iron catalysis .. 80
 4.4.3.4 Low-temperature Fischer-Tropsch synthesis .. 81
 4.4.4 Announced and commercialized technologies ... 84
 4.4.4.1 Comparative features and niche definition .. 84
 4.4.4.2 Process technology innovations .. 84
 4.4.4.3 Catalyst technology innovations ... 85
4.4.4.4 Needs for technology improvement ... 85
4.4.4.5 R&D advances ... 85
4.4.4.6 This technology 10 years from now .. 86

4.5 BIOLOGICAL OR ETHANOL-TO-OLEFINS (ETO) .. 87
4.5.1 Current market impact and technical assessment .. 87
4.5.2 Needs for technology improvements ... 89
4.5.3 R&D advances .. 89
4.5.3.1 Process considerations .. 89
4.5.3.2 Catalyst developments .. 92

4.6 OLEFIN METATHESIS PROCESSES ... 95
4.6.1 Commercial impact .. 95
4.6.2 Simplified technology description .. 95
4.6.3 Announced and commercialized technologies .. 98
4.6.3.1 Lummus OCT ... 98
4.6.3.2 Axens META-4 .. 102
4.6.3.3 Mitsui ... 104
4.6.3.4 Elevance and XiMo ... 107
4.6.4 Needs for technology improvements ... 108
4.6.5 R&D advances .. 109
4.6.5.1 Tungsten oxide/SiO2 .. 109
4.6.5.2 Rhenium oxide/Al2O3 .. 110
4.6.6 This technology 10 years from now ... 113

4.7 OTHER OLEFIN PRODUCTION SOURCES ... 114
4.7.1 KBR Superflex .. 114
4.7.2 Lurgi Propylur .. 116
4.7.3 Mobil Olefin Interconversion (MOI) process .. 117
4.7.4 Methane oxidative coupling .. 118
4.7.5 DC Plasma discharge reactor for C1 conversion using metal/zeolite catalysts 119
4.7.6 Impact, needs and future ... 122

4.8 REFERENCES ... 123

5. INDEX ... 131
FIGURES

Figure 2.1 Light olefins share of global demand for petrochemicals (Adams, 2009). 5
Figure 2.2 Projected increase in demand for on-purpose propylene from various routes
(Yim, 2011). ... 8
Figure 2.3 Schematic diagram of a typical conventional FCC unit (Abdo, 2010). 10
Figure 2.4 FCC design and operating modes for two extremes: maximum gasoline and
maximum propylene/aromatics (Couch, et al., 2007 and Knight, 2010). 10
Figure 2.5 Typical yields range for ethylene and propylene for RIPP/Shaw S&W DCC
and CPP processes. Targets of DMMC-I catalyst to improve DCC propylene
(Leung, 2011 and Xhu, 2010). ... 12
Figure 2.6 Configuration of high-severity FCC process and typical product yields
compared to conventional fcc process (Ono, 2007). ... 14
Figure 2.7 UOP’s RxCat technology and FCC propylene yield spectrum for UOP’s
PetroFCC and RxPro processes (UOP, 2011)... 15
Figure 2.8 Configuration of I-FCC process along with typical yields of light olefins
(Soni et al., 2009; Lummus Technology I-FCC Brochure, 2009). ... 16
Figure 2.9 KBR’s Maxofin riser configuration along with typical product slate from a
single and dual riser (Claude, 2008). .. 16
Figure 2.10 Integrated R2R-RFCC and PetroRiser for enhanced propylene yields (Roux,
2010). .. 17
Figure 2.11 Simplified chemical reactions by steam catalytic naphtha cracking: free
radicals and carbonium ions mechanisms (Ren, 2004). ... 22
Figure 2.12 ACO reactor system and product yields from LSR naphtha cracking for ACO
60,000 tpy demo plant (Tallman et al., 2011). .. 23
Figure 2.13 Integrated PCC process for naphtha cracking to propylene (Bedell, 2003). 24
Figure 2.14 Reaction equilibration in catalytic naphtha cracking over ZSM-5 catalyst
showing propylene as the olefin product with highest yield (Bedell et al.
2003). .. 26
Figure 2.15 Global demand for light fuels, 1990-2015: middle distillates soars while
gasoline is laggard; along with global potential for biofuels. (Vautrain, 2011;
Holmgren, et al., 2007)... 27
Figure 2.16 Typical configuration of an ethylene plant by thermal steam cracking of
hydrocarbons plant (Walzl, 2010). ... 29
Figure 2.17 Typical Values of Specific CO₂ Emissions from Thermal Cracking Furnaces
as a function of Feedstock. (Schmidt, et al., 2010) ... 32
Figure 3.1 Diagram of Uhde’s STAR process (Uhde literature). .. 48
Figure 3.2 Typical UOP Pacol flowscheme (UOP literature). ... 50
Figure 3.3 Flowscheme for UOP Oleflex unit (UOP literature). .. 51
Figure 3.4 SMART technology flowscheme (UOP literature). .. 55
Figure 3.5 Propylene gap projection (CMAI, 2010). ... 63
Figure 4.1 Pathways to convert fossil fuels feedstocks to light olefins 69
Figure 4.2 Alkene distribution from the conversion of 2-octanol with metal oxide
catalysts (★ = equilibrium octane composition). .. 72
Figure 4.3 (left) Theoretical ASF plot for products; (right) Typical two alpha ASF plot
for products .. 78
Figure 4.4 Four types of reactors for FT synthesis at commercial scale. (Jager, 2003). 78
Figure 4.5 Olefin selectivity as a function of carbon number for supercritical and gas
phase FTS. (Jacobs, et al., 2003). ... 79
Figure 4.6 Example of potential chemicals from FT products. (Sasol literature). 80
Figure 4.7 (left) Carbon number dependence of olefin content from different reactor
operations: ■, fluid bed, middle pressure with iron; Δ, fixed bed, middle
pressure with iron;▲, cobalt normal pressure. (right) α-olefin in the olefin
fraction; ■, fluid bed, middle pressure with iron; Δ, fixed bed, middle pressure
with iron;▲, cobalt normal pressure synthesis; x, cobalt normal pressure
synthesis but with Kieselguhr support. (Pichler and Schulz, 1970) 81
Figure 4.8 The dependence of the olefin content for three space velocities (78, 337 and
2380 vol/vol catalyst). (Pichler, et al., 1967) ... 82
Figure 4.9 Dependence of olefin content for different carbon number products on the CO
conversion. (Pichler, et al., 1967).. 82
Figure 4.10 Carbon number dependency of the olefin content for slurry reactor synthesis
with an iron catalyst. (Davis and Miller, 2003) ... 82
Figure 4.11 Carbon number dependence on the % of branched products obtained using
iron catalysts with increasing alkali content. (Davis and Miller, 2004) 83
Figure 4.12 Biological ethanol to olefins process (Teng et al., 2008). 90
Figure 4.13 Proposed mechanism for ethanol dehydration (Morschbacker, 2009). 91
Figure 4.14 General diagram of an ethanol to ethylene plant (Morschbacker, 2009). 91
Figure 4.15 Product spectrum of the conversion of ethanol over H-ZSM-5 and dependence
on the reaction temperature: mass of catalyst 0.33 g; ratio Si/Al in
H-ZSM-5: 25; ethanol feed: 1 g/h; ethanol partial pressure: 0.4 bar; WHSV:
3 h\(^{-1}\); carrier gas flow: 2 l He/h. □:ethylene, ●:olefins, ○:paraffins, ▲: C\(_5^+\)
aliphatics, ♦:aromatics (Schulz and Bandermann, 1994) .. 92
Figure 4.16 Total olefin yield in the conversion of ethanol over H-ZSM-5 and dependence
on the ethanol partial pressure for different reaction temperatures (conditions
cf. Fig. 1). □: 300 °C, ○:350 °C, ◊:400 °C, and ♦:450 °C (Schulz and
Bandermann, 1994) .. 93
Figure 4.17 Product spectrum of the conversion of ethanol over H-ZSM-5 and dependence
on WHSV at 673 K. Mass of catalyst: 1.0-0.05 g H-ZSM-5; other conditions
see Figure 4.4. □:ethylene, ●:olefins, ○:paraffins, ▲: C\(_5^+\) aliphatics,
♦:aromatics (Schulz and Bandermann, 1994) ... 93
Figure 4.18 Product spectrum of the conversion of ethanol over H-ZSM-5 and dependence on the Si/Al ratio in the zeolite; other conditions see Figure 4.3. □: ethylene, ●: olefins, ○: paraffins, ▲: C5+ aliphatics, ♦: aromatics (Schulz and Bandermann, 1994). ... 94

Figure 4.19 The forward self-metathesis of propylene and the reverse cross-metathesis of ethylene and 2-butene (Delaude and Noels, 2007). ... 96

Figure 4.20 Main types of olefin metathesis reactions (Delaude and Noels, 2007). 97

Figure 4.21 Tandem and asymmetric olefin metathesis reactions (Delaude and Noels, 2007). ... 97

Figure 4.22 Chauvin mechanism involving addition of alkenes to alkylidenes and the formation of metalloyclobutane intermediates (modified from Olefin Metathesis, 2011). ... 98

Figure 4.23 ABB Lummus Global, Olefins Conversion Technology (OCT) (http://www.cbi.com/images/uploads/tech_sheets/Olefins.pdf, 2009). 100

Figure 4.24 (top) Catalyst used according to Regali (Regali, 2010) and (bottom) simple mechanistic scheme highlighting the rearrangement process occurring during metathesis (Olefin Conversion Technology, 2009). ... 100

Figure 4.25 Typical process flow diagrams for the application of Axens META-4 (Debuisschert, 2004; http://www.plantasquimicas.com/Procesunit/propileno.htm). .. 100

Figure 4.26 Side reactions in the Axens META-4 process. (Debuisschert, 2004) 103

Figure 4.27 Process flow diagram of the RING III project (www.sumitomo-chem.co.jp/english/newsreleases/docs/20060615_1.pdf - 32KB, 2011). 105

Figure 4.28 Advantage of using short contact times to prevent unwanted hydrogenation (Takai et al., 2010a). ... 106

Figure 4.29 Demonstration and limitations of the regeneration of WO3/SiO2 in liquid H2O or H2O vapor (Ikenaga, 2010). ... 106

Figure 4.30 Examples of molybdenum and tungsten metathesis catalysts (Schrock, 1992; http://web.mit.edu/rrs/www/Research%201.pdf), including an asymmetric catalyst used to make a stereoregular isotactic polymer (McConville et al., 1993). .. 107

Figure 4.31 Metathesis reaction used in growing the carbon backbone to produce biowax. (Murphy et al., 2009) ... 108

Figure 4.32 Proposed mechanism for initiation of metathesis on WO3/SiO2 (van Roosmalen and Mol, 1982). ... 109

Figure 4.33 Carbon map from EFTEM of an aged WO3/SiO2 catalyst. Blue region indicates tungsten oxide and the orange region displays carbon (Moodley et al., 2007). ... 110

Figure 4.34 Activated complexes postulated to be present for two cases: (case A) low Re loadings on a strongly interacting support, Re embedded in support, constricting the possibility of complex formation and (case B) higher loadings,
where Re is on the open surface and complex can thus form (Arnoldy et al.,
1985). .. 111

Figure 4.35 Identical activities achieved in MeReO₃ catalysts prepared by organometallic
MeReO₃ (i.e., no Sn, open circle) and by reaction of supported Re oxide
with Me₄Sn (closed circles) (Moses et al., 2007). ... 113

Figure 4.36 KBR ACO process flow diagram (Niccum et al., 2010; Tallman and Eng,
2008). .. 115

Figure 4.37 Overall ACO process flow diagram, including plant recovery system
(Niccum et al., 2010; Tallman and Eng, 2008). ... 115

Figure 4.38 Benefits in olefin yields from utilizing the ACO process relative to steam
cracking (Niccum et al., 2010; Tallman and Eng, 2008). 116

Figure 4.39 Process flow diagram of the Lurgi AG Propylur process (Bulkaiov, 2008). 117

Figure 4.40 Mobil Olefin Interconversion (MOI) process. (Harandi, 1992) 118

Figure 4.41 Declining selectivity to C₂ products with increasing C₁ conversion (Maitra,
1993). .. 119

Figure 4.42 Plasma reactor for methane conversion to unsaturated C₂ products (Gordon et
al., 2003). .. 120

Figure 4.43 Effect of metal loading on C₂ selectivity. 1/1 H₂/CH₄ with 2% O₂, 1.2 s
residence time, 4.55 W, 7 mm ID, 0 psig. Temperature optimized for each
catalyst to produce the highest selectivity of C₂H₄ (Gordon et al., 2003). 120

Figure 4.44 Effect of residence time on methane conversion, power consumption, and
overall C₂ selectivity. 0.025 wt.% Ag–0.025 wt.% Pd–Y-zeolite, 1/1 H₂/CH₄
with 2% O₂, 4.55 W, 7 mm ID, 0 psig (Gordon et al., 2003). 121

Figure 4.45 Effect of feed composition on methane conversion, power consumption, and
overall C₂ selectivity. 0.025 wt.% Pd–Y-zeolite, 4.55 W, 7 mm ID, 0 psig
(Gordon et al., 2003)... 121

TABLES

Table 2.1 Top Ethylene Producers and Refiners with Largest FCC Capacity (True, 2011;
Nieskens, 2007) .. 6

Table 2.2 World Production for Ethylene and Propylene: 2010 (Yim, 2011) 6

Table 2.3 World End-Use for Ethylene and Propylene: 2010 (Yim, 2011) 6

Table 2.4 World FCC Capacity, Feed Quality and FCC Catalyst Demand (True, et al.,
2010) ... 9

Table 2.5 Emerging FCC-Based Processes for Maximizing Propylene from the Catalytic
Cracking of Heavy Feeds (Aitani, 2006; Rigutto, 2010) 11

Table 2.6 Typical Operating Parameters for a DCC Unit Compared with FCC and
Steam Cracking Units (Dharia, et al., 2009).. 13
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>World Production Capacity of Conventional FCC Catalyst and ZSM-5 Additive Along with New Types of Commercial High-Olefins FCC Catalysts and ZSM-5 Additives</td>
</tr>
<tr>
<td>2.8</td>
<td>Major Companies Having Patents on Zeolite-based Catalytic Naphtha Cracking</td>
</tr>
<tr>
<td>2.9</td>
<td>Representative Yields of Products from Thermal Cracking of Gaseous and Liquid Hydrocarbon Feedstocks (Dominov, et al., 2009)</td>
</tr>
<tr>
<td>2.10</td>
<td>Ethylene Cracker Technology Owners (Ren, et al., 2006; Walzl, 2010)</td>
</tr>
<tr>
<td>4.1</td>
<td>A Typical Material Balance for the UOP-Norsk Hydro MTO Process (UOP/Norsk Hydro literature)</td>
</tr>
<tr>
<td>4.2</td>
<td>Product Distribution from Low- and High-temperature FT Synthesis (Jager, 2003)</td>
</tr>
<tr>
<td>4.3</td>
<td>Cyclic Content of High-temperature FT Synthesis at 320 °C (Pichler and Schulz, 1970)</td>
</tr>
<tr>
<td>4.4</td>
<td>Major Developments in Olefin Metathesis (Delaude and Noels, 2007)</td>
</tr>
<tr>
<td>4.6</td>
<td>List of Existing and Planned OCT Processes from GS Engineering & Construction, December, 2008 (Propylene Technology by PDH & Metathesis (OCT), 2008)</td>
</tr>
<tr>
<td>4.7</td>
<td>Accomplishments of the Demonstration Plant (Debuisschert, 2004)</td>
</tr>
<tr>
<td>4.8</td>
<td>Comparison of Re and W-based Catalysts Provided by Axens (Debuisschert, 2004)</td>
</tr>
<tr>
<td>4.9</td>
<td>Switching with Addition of H₂ at 250 °C (Takai, 2010b)</td>
</tr>
<tr>
<td>4.10</td>
<td>Ultimate Yields of the Superflex Process (Niccum et al., 2010; Tallman and Eng, 2008)</td>
</tr>
<tr>
<td>4.11</td>
<td>Summary of Selective Cracking Processes (Belussi and Pollesel, 2005)</td>
</tr>
<tr>
<td>4.12</td>
<td>Economic Considerations for DC Plasma Discharge Process (Gordon et al., 2003)</td>
</tr>
<tr>
<td>4.13</td>
<td>Comparison of Olefin Cracking Technologies (Tallman et al., 2006)</td>
</tr>
</tbody>
</table>