FRONTIERS IN CATALYSIS II
(completed October 2010)

A technical investigation commissioned by the members of the Catalytic Advances Program

CONTENTS

1. INTRODUCTION ... 1

2. CATALYSIS IN AQUEOUS MEDIA ... 5
 2.1 INTRODUCTION ... 5
 2.2 DRIVERS FOR AND AGAINST THE USE OF AQUEOUS MEDIA 5
 2.2.1 Process Aspects: Volumes, Separations, Drying, Heat Utilization 5
 2.2.2 100% Aqueous Medium (excluding Phase-Transfer Catalysis) 9
 2.2.3 Aqueous-Organic Mixtures ... 10
 2.2.4 Catalyst Requirements for Stability in the Aqueous Phase 10
 2.3 CATALYSIS FOR C-C BOND FORMATION IN AQUEOUS MEDIA 12
 2.3.1 Nature of Catalysts Used in Aqueous Media .. 12
 2.3.1.1 Lewis Acid .. 12
 2.3.1.2 Colloidal Dispersions ... 14
 2.3.1.3 Metal Mediation ... 16
 2.3.1.4 Metal Activation by Salts ... 18
 2.3.2 Production of Chiral Molecules .. 19
 2.3.3 Alkylation Reaction Catalysis .. 25
 2.3.4 Chemoselectivity, Regioselectivity and Diastereomerism 27
 2.3.5 Future Needs and Projections for Commercial Use 29
 2.4 MICELLAR AND RELATED CATALYSIS ... 30
 2.4.1 Aspects of Micellar Catalysts and their Properties 30
 2.4.2 Amphiphilic Catalysis ... 32
 2.4.3 Porphyrin Catalysis ... 35
2.4.4 Epoxidation of Olefins with H₂O₂ ... 37
2.4.5 Hydrogenations and Other Useful Studies .. 39
2.4.6 Future Needs and Projections for Commercial Use 43

2.5 AQUEOUS PHASE REFORMING CATALYSIS ... 43
2.5.1 Saccharide Hydrolysis for Fuels, Chemicals and Energy 43
2.5.2 Alcohols, Glycerol and other Small Molecules ... 44
2.5.3 Current Assessment and Future Needs.. 45

2.6 POLYMER DEGRADATION CATALYSIS ... 45
2.6.1 Enzymatic Catalysis Reaction Studies .. 46
2.6.2 Lignocellulosic Hydrolysis Catalysis .. 47
2.6.3 Current Assessment and Future Needs.. 47

2.7 OVERALL TECHNOLOGY STATUS ... 48
2.7.1 Commercial Successes .. 48
2.7.2 Development Pipeline and Needs ... 48

2.8 CONCLUSIONS AND PERSPECTIVES .. 49

2.9 REFERENCES .. 50

3. BIOMIMETIC CATALYSIS ... 59
3.1 INTRODUCTION ... 59

3.2 BIO-INSPIRED METAL-BASED CATALYSIS ... 60
3.2.1 Introduction .. 60
3.2.2 Oxidation reactions ... 61
3.2.2.1 Introduction .. 61
3.2.2.2 Main mimicked systems ... 61
3.2.2.3 Oxidation of alcohols ... 66
3.2.2.4 Alkane hydroxylation ... 69
3.2.2.5 Asymmetric alkene oxidation ... 72
3.2.2.6 Miscellaneous ... 75
3.2.3 Miscellaneous ... 76

3.3 ORGANOCATALYSIS ... 77
3.3.1 Introduction .. 77
3.3.2 Biomimetic organocatalysis ... 78
3.3.3 Conclusion... 80
3.4 ARTIFICIAL METALLOENZYMES... 82
 3.4.1 Introduction ... 82
 3.4.2 Design of artificial metalloenzymes.. 82
 3.4.3 Catalytic scope of artificial metalloenzymes... 84
 3.4.4 Conclusion .. 87
3.5 METAL ORGANIC FRAMEWORKS (MOFs).. 88
 3.5.1 Introduction ... 88
 3.5.2 Catalytic MOFs .. 89
 3.5.3 Enantioselective MOFs .. 91
 3.5.4 Conclusion .. 92
3.6 EXAMPLE OF APPLICATIONS: ARTIFICIAL PHOTOSYNTHESIS AND
 SOLAR FUELS... 93
3.7 CONCLUSIONS... 95
 3.7.1 Economic and ecological assessment of a biocatalytic process 95
 3.7.2 Large scale application of organocatalysis ... 96
 3.7.2.1 Economy of the catalyst (price/availability) 96
 3.7.2.2 Stability of the catalysts and handling issues 96
 3.7.2.3 Recycling issues: Immobilization of organocatalysts 97
 3.7.3 Screening and optimization of artificial metalloenzymes 98
 3.7.4 MOF materials .. 99
3.8 REFERENCES.. 99
4. MODELING AND SIMULATION OF CATALYSIS... 115
 4.1 INTRODUCTION.. 115
 4.2 COMPUTATIONAL MODELING METHODS AND APPLICATIONS......... 119
 4.2.1 Density Functional Theory (DFT).. 119
 4.2.1.1 DFT Background and Issues .. 119
 4.2.1.2 Applications of DFT ... 123
 4.2.2 Molecular Dynamics ... 136
 4.2.3 Kinetic Monte Carlo ... 137
 4.2.4 Microkinetic Modeling ... 144
4.2.5 Computational Fluid Dynamics (CFD) Modeling in Catalysis................... 145

4.3 CONCLUSIONS ... 146

4.3.1 Current Assessment of the Methodology .. 147

4.3.2 Future Directions ... 147

4.4 REFERENCES .. 148

5. INDEX .. 161

FIGURES

Figure 2.1 Effects of water on the yield and selectivity in aldol reactions using proline...... 6

Figure 2.2 Separation of the aldol product by centrifugation .. 8

Figure 2.3 Separation of the aldol product by centrifugation in the asymmetric aldol reaction .. 8

Figure 2.4 Structure of amphiphilic polystyrene-poly(ethylene glycol) (PS-PEG) resin....33

Figure 2.5 Thermoregulated phase-transfer catalysis for the transfer hydrogenation 33

Figure 2.6 Structure of HEMA and mim Cl .. 44

Figure 2.7 Structure of PLA and PCL ... 46

Figure 2.8 Structure of OA and TMAH ... 47

Figure 3.1 Oxidations of organic compounds catalyzed by cytochrome P-450
(Based on Ji, et al., 2010). ... 62

Figure 3.2 Prosthetic of cysteinato-heme enzymes: an iron(III) protoporphyrin-IX covalently linked to the protein by the sulfur atom of a proximal cysteine ligand. Based on Ji, et al, 2010................................. 62

Figure 3.3 Metallo-oxygenase mechanisms. Oxygen atoms involved in these processes are shown in red. e–, electron; M, metal; P, porphyrin. To emphasize parallels with the haem paradigm (a), mechanisms proposed for O2 activation by various metallo-oxygenases - di-iron and dicopper (b), and mononuclear nonhaem iron and copper (c) - are shown. All involve the formation of an initial O2 adduct (superoxo), conversion to a metal–peroxide (peroxo), and subsequent O-O bond cleavage to yield a high-valent oxidant (oxo). Based on Que, et al., 2008. .. 63
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>Ligands TMTACN, Me4DTNE, L1, immobilized TMTACN derivative, dinuclear Mn(IV)TMTACN compound 1, and the structurally related mononuclear complex 2. (TMTACN, 1,4,7-trimethyl-1,4,7-triazacyclononane, Me4DTNE, 1,2-bis(4,7-dimethyl-1,4,7-triazacyclonon-1-yl)ethane). Based on de Boer, 2008.</td>
</tr>
<tr>
<td>3.6</td>
<td>Oxidation of alcohols catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen and isobutyraldehyde. Based on Ji, et al., 2010.</td>
</tr>
<tr>
<td>3.7</td>
<td>Ligands for modelling GAO. Based on Que, et al., 2008.</td>
</tr>
<tr>
<td>3.8</td>
<td>Benzyl alcohol oxidation to benzaldehyde. Based on Hage, et al., 2006b.</td>
</tr>
<tr>
<td>3.9</td>
<td>Non-heme ligands used for mononuclear iron(II) complexes.</td>
</tr>
<tr>
<td>3.10</td>
<td>Electrophilic, bulky catalyst Fe(S,S)-PDP (10) for selective aliphatic C-H oxidation. Based on Chen, et al, 2010.</td>
</tr>
<tr>
<td>3.11</td>
<td>Allylic CH-activation. Based on Hage, et al., 2006b.</td>
</tr>
<tr>
<td>3.12</td>
<td>Manganese meso-tetraphenylporphyrin catalyzed epoxidation of olefins.</td>
</tr>
<tr>
<td>3.13</td>
<td>Structure of μ-oxo-bis-iron(III) porphyrin (11). Based on Zhou et al, 2007.</td>
</tr>
<tr>
<td>3.14</td>
<td>Iron Complexes Useful for Asymmetric Alkene Oxidation. Based on Zhou et al, 2007.</td>
</tr>
<tr>
<td>3.15</td>
<td>Manganese complexes with chiral tetradentate N4 catalyzed epoxidation of olefins. Based on Wu, et al., 2009.</td>
</tr>
<tr>
<td>3.16</td>
<td>Alkene epoxidation and cis-hydroxylation. Based on de Boer, et al., 2005.</td>
</tr>
<tr>
<td>3.17</td>
<td>Aerobic oxidation of ketones to lactone catalyzed by iron-porphyrins.</td>
</tr>
<tr>
<td>3.18</td>
<td>Ruthenium meso-tetraphenylporphyrin chloride catalyzed sulfoxidation.</td>
</tr>
<tr>
<td>3.19</td>
<td>Oxidation of sulfide to sulfone catalyzed by manganese-porphyrin with H2O2. Based on Ji, et al., 2010.</td>
</tr>
<tr>
<td>3.20</td>
<td>Mechanism comparison of class I aldolases and proline-catalysis of aldol reactions. Based on Berkessel, et al., 2004.</td>
</tr>
<tr>
<td>3.21</td>
<td>A selection of typical organocatalysts. Based on Berkessel, et al., 2004.</td>
</tr>
<tr>
<td>3.22</td>
<td>Representation of the various anchoring strategies of artificial métalloenzymes: a) supramolecular, b) dative. M denotes the catalytically active transition metal and L the ligand. Based on Rosati, et al., 2010.</td>
</tr>
</tbody>
</table>
Figure 3.23 Artificial metalloenzymes for enantioselective hydrogenation reactions. Based on Skander, et al., 2004. ... 86

Figure 3.24 Vanadium-dependent artificial peroxidase for enantioselective sulfoxidation reactions. Based on Pordea, et al., 2008b. ... 86

Figure 3.25 Scope of the C-C bond forming reactions catalyzed by st-DNA/Cu-dmbipy. Based on Rosati, et al., 2010. ... 87

Figure 3.26 Synthesis of ZnPO-MOF. The stick representation of the unit cell is shown on the right-hand side (yellow polyhedra = Zn, red = O, green = F, blue = N, gray = C). Solvent molecules, hydrogens, and disordered atoms have been omitted for clarity. Based on Shultz, et al., 2009. .. 90

Figure 3.27 Acyl-transfer reactions catalyzed by ZnPO-MOF. Based on Shultz, et al., 2009. .. 90

Figure 3.28 Structure of rho-ZMOF and its building blocks. (a) Eight-coordinate molecular building blocks that could be represented as a tetrahedral building units, (b) [H₂TMPyP]⁴⁺ porphyrin, (c) crystal structure of rho-ZMOF (left), hydrogen atoms omitted for clarity, and schematic presentation of [H₂TMPyP]⁴⁺ porphyrin ring enclosed in rho-ZMOF α-cage (right, drawn to scale). Based on Alkordi, et al., 2008. .. 91

Figure 3.29 Architectures of FeFe and NiFe hydrogenases in the reduced active state and schematic representation of the structure of the bio-inspired H2-evolving nickel catalyst grafted on a carbon nanotube. Based on Le Goff, et al. 2009. Based on Kim et al, 1997 ... 94

Figure 3.30 Selected immobilized organocatalysts. Based on Berkessel, et al. 2004. 98

Figure 4.1 Publications that have DFT and B3LYP (a popular implementation of DFT) in the topic from a search on Web of Science (Fey 2009). 115

Figure 4.2 Length scales involved in heterogeneous catalysis spanning meters to angstroms. Catalyst behavior is impacted by processes such as convection, diffusion, and surface reactions that can also span many orders of time scales. (Figure provided by Professor Marcus Bäumer of Universität Bremen; composed by Marcus Bäumer and Arne Wittstock). .. 116

Figure 4.3 The screening of bimetallic surface alloys for HER catalysts based on DFT. The first screening level is based on free energy of hydrogen adsorption (ΔGₜₜ) and the subsequent screening is based on the atomic processes (shown on the right) that affect the stability of the surface alloy 117
Figure 4.4 Schematic of some of the different modeling methods to span large length and time scales. A first-principles simulation relies on quantum mechanical methods, such as DFT, as the starting point to the development of connected multi-scale framework. Some approaches to link between the different methods are indicated. For example, DFT-derived data can be used to fit a potential to be used in molecular dynamics (MD) or Monte Carlo (MC) simulations...119

Figure 4.5 a) STM image of the Pd surface oxide that forms on Pd(111) and (b) the DFT resolved minimum structure corresponding to the image in (a) (Lundgren et al. 2002). .. 124

Figure 4.6 Results from a DFT-based reaction path analysis for benzene hydrogenation on Pt(111). The activation energies are given in kJ/mol and the dominant pathways are indicated in bold arrows. Benzene hydrogenation proceeds by consecutive addition of H atoms (Saeys et al. 2005). ... 125

Figure 4.7 The MEP for the OMC → EO and OMC → AC reaction pathways on the (a) {111} and (b) {100} facets of Ag as calculated by DFT. (Christopher et al. 2008) ... 127

Figure 4.8 (a) A schematic of the effect of facet on selectivity of ethylene epoxidation and (b) the experimental results showing the increase in selectivity of the {100} Ag nanowires (Christopher et al 2008)... 127

Figure 4.9 (a) Metal cost versus the methyl heat of adsorption is shown for the 70 binary metallic compounds examined by Stout et al. The regions of increased selectivity and turnover rate are shown. As can be seen from the figure, NiZn alloys offer an optimal compromise between turnover rate, selectivity, and price (Studt et al. 2008). (b) DFT-derived equilibrium pressures at 300 K for the candidate metal hydride mixture reactions identified as promising candidates for H₂ storage plotted against the weight percent release of H₂ in the reaction. The relatively large error bars are due to the 10 kJ/mol error associated with the DFT calculations of the free energy enthalpies (Alapati et al. 2008). .. 129

Figure 4.10 The predicted shapes for Pt nanoparticles as a function of the oxygen partial pressure derived from ab initio thermodynamics (Mittendorfer et al. 2007). 130

Figure 4.11 A slab model of water on GaN(10-10) for a DFT study of the photocatalytic oxidation of water... 132

Figure 4.12 The cluster model derived from AIMD-DFT simulations for dissociated H₂O on GaN(10-10) (Shen et al. 2010). .. 133

Figure 4.13 Free energy diagram for oxygen reduction on Pt(111) at different electrode potentials (Norskov et al. 2004). ... 134

Figure 4.14 Models for (a) 1 nm Pt cluster (55 atoms) (b) 2 nm Pt cluster (101 atoms) and (c) Pt(111) surface (Han et al. 2008). ... 135
Figure 4.15 (a) Atomic model of stable RuO₂(110) structure, (b) snapshot of a simulation of CO oxidation where the oxygen adatoms are red circles and CO are blue circles, and (c) the distribution of site occupancies and the turnover frequencies in cm⁻²s⁻¹ as a function of partial pressure of oxygen at T = 600 K. (Reuter et al. 2004) ... 139

Figure 4.16 Snapshot of CO hydrogenation on Rh/Mn nanoparticles on SiO₂ from a KMC simulation. (Mei et al. 2010) ... 140

Figure 4.17 A representative example of transitions that can be found using the dimer method. These are reaction mechanism for formaldehyde on Cu(100). (Xu et al. 2009) ... 143

Figure 4.18 The model predicted NH₃ productivity versus experiment for several different flow conditions. (Honkala, Hellman et al. 2005) .. 145

Figure 4.19 The geometry and flow-field used in the CFD modeling study of CO oxidation on RuO₂(110) catalysts. (Matera et al. 2010b; Matera et al. 2010a). 146

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>APR of 10 wt% Glycerol at 503 K and 3.2 MPa (LHSV of 8.4 h⁻¹)</td>
<td>45</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Typical Features of Homogeneous Catalysis and Biocatalysis</td>
<td>60</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Reactions Catalyzed by Artificial Metalloenzymes</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>List of DFT Software Packages Used in Catalysis Studies</td>
<td>120</td>
</tr>
</tbody>
</table>

The Catalytic Advances Program (CAP)

CAP is the industry’s leading membership-driven program which serves an information resource for R&D and commercial organizations in the catalyst and process industries. Companies that join CAP combine their resources to jointly explore the world’s most promising catalytic technologies. Members receive three in-depth CAP Technical Reports which are written by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CAP Communications (delivered via e-mail), which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CAP Annual Meeting.

The Catalytic Advances Program (CAP) is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact John J. Murphy at John.J.Murphy@catalystgrp.com or +1.215.628.4447.