CONVERSION OF CO₂ TO SYNGAS AND SYNTHETIC NATURAL GAS (SNG): TECHNOLOGIES AND MARKETS

A techno-economic investigation commissioned by the members of the Carbon Dioxide Capture & Conversion (CO₂CC) Program

Client Private
December 2013
The Carbon Dioxide Capture & Conversion (CO2CC) Program

The CO2CC Program is a membership-directed consortium whose members are involved in the development, monitoring and utilization of the "state-of-the-art" in technological progress and commercial implementation of carbon dioxide capture/clean-up and conversion. By the direction of the member companies (through balloting and other interactive means), the program delivers a range of timely and insightful information and analyses which are accessible exclusively to members and protected by confidentiality agreements. The objective is to document technically and commercially viable options for CO2 capture/clean-up as well as its conversion into useful products which meaningfully address the challenges posed by CO2 life-cycle and overall sustainability issues.

Members receive three in-depth CO2CC Techno-economic Reports which are written by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CO2CC Communiqués (delivered via e-mail) which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CO2CC Program Annual Meeting.

The Carbon Dioxide Capture & Conversion (CO2CC) Program is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact John J. Murphy at John.J.Murphy@catalystgrp.com or +1.215.628.4447 (x1121).
CONTENTS

EXECUTIVE SUMMARY ... xxi

1. INTRODUCTION .. 1
 1.1 SCOPE AND OBJECTIVES ... 1
 1.2 OVERVIEW OF CO₂ CONVERSION OPTIONS .. 2
 1.3 MARKET & TECHNOLOGY DRIVERS FOR CO₂-BASED SYNGAS AND SNG 2
 1.4 CHALLENGES TO USING CO₂ AS A FEEDSTOCK .. 3
 1.5 REPORT CONTRIBUTORS ... 3
 1.6 REFERENCES ... 6

2. CO₂ CONVERSION TO SYNGAS .. 7
 2.1 STATE OF "BENCHMARK" TECHNOLOGIES FOR SYNGAS PRODUCTION 7
 2.1.1 Steam Methane Reforming (SMR) .. 7
 2.1.1.1 Key reactions .. 8
 2.1.1.2 Catalysts ... 8
 2.1.1.3 Process concepts/reactors ... 9
 2.1.2 Gasification .. 10
 2.1.2.1 Key reactions .. 11
 2.1.2.2 Process concepts/reactors ... 11
 2.1.2.3 Environmental benefits .. 12
 2.1.3 Partial oxidation of methane ... 12
 2.1.3.1 Key reactions .. 12
 2.1.3.2 Process concepts/Reactors .. 13
 2.1.4 Others .. 14
 2.1.5 Outlook .. 15
 2.2 CO₂ CONVERSION TO SYNGAS VIA DRY REFORMING OF METHANE (DRM) .16
 2.2.1 Processes/ Catalysts/ Other Factors .. 17
 2.2.1.1 Processes .. 17
 2.2.1.2 Catalysts ... 18
2.2.1.3 Other factors ... 23
2.2.2 Enabling technologies .. 23
 2.2.2.1 Calcor technology ... 23
 2.2.2.2 Carbon Sciences technology 25
 2.2.2.3 Others ... 25
2.2.3 Outlook .. 25

2.3 CO₂ CONVERSION TO SYNGAS VIA OTHER DEVELOPMENTAL ROUTES 26
 2.3.1 Bireforming ... 26
 2.3.1.1 Processes ... 26
 2.3.1.2 Catalysts .. 27
 2.3.2 Oxidative dry reforming ... 28
 2.3.2.1 Processes ... 28
 2.3.2.2 Catalysts .. 29
 2.3.3 Trireforming .. 29
 2.3.3.1 Processes ... 29
 2.3.3.2 Catalysts .. 31
 2.3.4 Electrochemical route .. 32
 2.3.4.1 Processes ... 32
 2.3.4.2 Performances ... 33
 2.3.5 Solar-based Thermochemistry 33
 2.3.5.1 Processes ... 33
 2.3.5.2 Performances ... 35
 2.3.6 Plasma route ... 36
 2.3.6.1 Processes ... 36
 2.3.6.1 Performances ... 36
 2.3.7 Enabling Technologies .. 38
 2.3.7.1 SPARG technology ... 38
 2.3.7.2 KOGAS technology ... 38
 2.3.7.3 Carnol technology .. 39
2.3.7.4 BASF technology ... 39
2.3.7.5 Haldor Topsøe technology ... 39
2.3.8 Outlook... 39
2.4 COMMERCIAL/MARKET SIZE(S) AND OPPORTUNITIES .. 40
 2.4.1 Value chain of CO2 .. 40
 2.4.2 Syngas market .. 41
 2.4.3 Syngas production capacity .. 42
 2.4.4 CO2 to syngas ... 42
2.5 REMAINING HURDLES ... 43
2.6 CONCLUSIONS .. 45
2.7 REFERENCES .. 46
3. CO2 CONVERSION TO SYNTHETIC NATURAL GAS (SNG) 53
 3.1 SNG PRODUCTION: INTRODUCTION ... 53
 3.1.1 Needs for SNG Production .. 53
 3.1.2 CCS and CCU ... 54
 3.2 TECHNOLOGIES FOR SNG PRODUCTION FROM SYNGAS 56
 3.3 SNG PRODUCTION FROM CO2 .. 59
 3.3.1 Catalytic CO2 conversion ... 59
 3.3.1.1 Catalysts .. 59
 3.3.1.2 Reaction mechanism ... 61
 3.3.1.3 Reaction and process technology ... 61
 3.3.2 Photocatalytic CO2 conversion ... 62
 3.3.3 Electrochemical CO2 conversion ... 65
 3.3.3.1 Electrodes for methane production via ERC .. 66
 3.3.4 Membrane assisted CO2 conversion ... 68
 3.4 COMMERCIAL/MARKET SIZE ANALYSIS .. 69
 3.4.1 Commercialization ... 69
 3.4.2 Markets .. 70
 3.5 PROS AND CONS AND SUSTAINABILITY ... 71
4. CO₂ UTILIZATION IN “POWER TO GAS” ...81
 4.1 STATE OF TECHNOLOGY ..81
 4.2 CO₂ UTILIZATION IN “POWER TO GAS” ...82
 4.2.1 Electricity to H₂ ...82
 4.2.1.1 Hydrogen usage and production ..82
 4.2.1.2 Hydrogen for energy storage ...82
 4.2.2 Electrolysis, Other routes ...83
 4.2.2.1 Electrolysis ...83
 4.2.2.2 Others ..85
 4.2.3 CO₂ Utilization in Gas ...85
 4.2.4 Enabling Technologies ..86
 4.2.4.1 The first full-scale stand-alone wind-hydrogen project in the World86
 4.2.4.2 Residential H₂ to power in Denmark ..87
 4.2.4.3 First sale of residential H₂ to power in Germany87
 4.2.4.4 Public transportation with H₂ fuel ..87
 4.2.4.5 Public transportation with Hythane® fuel ..88
 4.2.4.6 H₂ storage for automobile fuel ..88
 4.2.4.7 Solid H₂ storage ...88
 4.2.4.8 The Audi e-gas for automobile fuel ..88
 4.3 COMMERCIAL/MARKET OPPORTUNITIES ...89
 4.3.1 Markets ..89
 4.3.2 Participants ...90
 4.4 TECHNICAL/ECONOMIC HURDLES ...91
 4.4.1 Cost-effective H₂ Generation, Energy Storage, Others91
 4.4.1.1 Cost effective H₂ generation ...91
 4.4.1.2 Energy storage ...92
 4.4.1.3 Others ...92
4.5 CONCLUSIONS .. 93
4.6 REFERENCES ... 94

5. INDEX ... 97

FIGURES

Figure 2.1.1.1 Reaction rate vs metal dispersion on ZrO₂, Al₂O₃ and MgAl₂O₄ support at 500°C with steam/CH₄ molar ratio of 4 (adapted from Jones et al., 2008).9

Figure 2.1.3.1 Basics of (a) multi-purpose gasification and (b) autothermal reforming reactors (adapted from Lurgi, 2003). .. 13

Figure 2.1.4.1 The hydromethanation process developed by GreatPoint Energy. 15

Figure 2.2.1 Number of publications (blue) and patents (red) published per year dealing with CO₂ reforming of methane or dry reforming. Source: SciFinder database, last accessed September 18, 2013). .. 16

Figure 2.2.1.1 Schematic representation of bifunctional catalysis on basic support (adapted from Bachiller-Baeza et al. 2013). .. 20

Figure 2.2.1.2 Ni particles diameter (blue) and amount of coke (red) on NiBₓ/Al₂O₃ catalysts (adapted from Fouskas et al., 2013). ... 21

Figure 2.2.2.1 Schematic flow diagram for Calcor Standard process 23

Figure 2.3.1.1 CO₂ and CH₄ conversion in bireforming of methane over 15 wt% Ni/MgO at 0.7 MPa and 830°C. 100 mL min⁻¹ of CH₄/CO₂/H₂O with a molar ratio of 3/1.2/2.4 and GHSV of 6 10⁴ mL h⁻¹ g⁻¹ catalyst. Reprint from permission of Olah et al., 2013 (American Chemical Society) ... 27

Figure 2.3.3.1 Thermodynamic equilibrium with temperature at 0.1 MPa from a feed of 8.4v% CO₂, 12.9v% H₂O, 5.8v% O₂, and 60v% N₂ (Halmann and Steinfeld, 2006) ... 30

Figure 2.3.5.1 Solar power concentration: the principle (left), picture of heliostats and furnace at PROMES-CNRS, France (right) ... 34

Figure 2.3.5.2 Ceria temperature profile, CO, H₂ and O₂ production rate, and H₂/CO molar ratio during ten consecutive splitting cycles. Experimental conditions: 3.6 and 0.7 kW radiation power input during reduction and oxidation steps, respectively; H₂O/CO₂ = 6.7; reduction and oxidation steps performed at constant time intervals of 30 and 15 minutes, respectively (Furler et al., 2012) ... 35

Figure 2.3.6.1 Schematic representation of the catalyst-packed dielectric barrier discharge reactor for dry reforming of methane. Reprint from permission of Mahammadunnisa et al., 2013 (American Chemical Society) ... 36
Figure 2.3.6.2 (a) Schematic representation of the shade reactor, CH₄/CO₂/O₂ fed at room temperature and atmospheric pressure from the bottom; (b) Picture of the 2.5 cm³ shade reactor at gas residence time of 0.1 s and SEI of 84 kJ mol⁻¹; (c) CH₄, CO₂ and O₂ conversion with time on stream (Liu et al., 2013)..........................37

Figure 2.3.7.2 Schematic flow diagram of KOGAS trireforming process.................................38

Figure 2.4.1.1 CO₂ emissions percentage by regions (EIA, 2010)...41

Figure 2.5.1 Energy cost for the production of 1 mol of syngas through different processes. (A) Perfect CO₂ dissociation-100% conversion, 100% chemical energy efficiency; (B) CO₂ dissociation by dielectric barrier discharge; (C) CO₂ dissociation by thermal plasma jet; (D) CO₂ dissociation by DC corona discharge; (E) CO₂ dissociation by gliding arc plasmatron; (F) CO₂ dissociation by dielectric barrier discharge with catalyst; (G) CO₂ dissociation glow discharge with catalyst; (H) perfect dry reforming; (I) dry reforming by glow discharge; (J) dry reforming by microwave discharge; (K) dry reforming by binode thermal plasma; (L) perfect steam reforming; (M) partial oxidation-pilot plant (Texaco Shell); (N) partial oxidation by gliding arc Tornado; (O) autothermal reforming-pilot plant; (P) coal gasification-fixed bed, bituminous (Sasol-Lurgi); (Q) coal gasification-fixed bed, lignite(Sasol-Lurgi); (R) coal gasification-fixed bed, anthracite (Sasol-Lurgi); (S) coal gasification-slagging bed, bituminous. Reprint from permission of Lebouvier et al. 2013 (American Chemical Society)..44

Figure 3.2.1 General scheme of the process chain from a solid carbon source to SNG (modified from Kopyscinski et al., 2010)..56

Figure 3.2.2 High-efficiency SNG production system (modified from Rabou & Bos, 2012)..58

Figure 3.3.2.1 Carbon dioxide conversion to hydrocarbon fuels by sunlight-driven routes (based on Varghese et al., 2009)...64

Figure 3.3.3.1 Electrochemical reduction of CO₂ to methane and ethylene on various studied electrodes, electrolyte solutions (aqueous and non-aqueous) (modified from Halmann and Steinberg, 1999; Jhong et al., 2013)..66

Figure 3.3.4.1 Possible configurations for the membrane applications in the framework of SNG production. A) Upgrading and purification of raw SNG via membrane system. B) Three potential options for membrane applications in CO₂ conversion to SNG, membranes for CCS to purify the raw CO₂ gas to high purity gas before feeding it into a methanation reactor, membrane assisted reactor for selective removal of by-product water-vapor and distribution of pure H₂ for example in a Pd-based membrane to control the reaction.68

Figure 4.2.2.1 Thermodynamics of the water splitting process at 0.1 MPa: (a)energy with temperature, (b) cell voltage with temperature, and (c) cell voltage with pressure at three different temperatures (adapted from Millet, 2012)........84
Figure 4.2.4.1 Utsira wind-hydrogen integrated system...86
Figure 4.2.4.2 Cities involved in the HYFLEET:CUTE project, and bus fueling station in Berlin. ...87
Figure 4.2.4.3 Audi e-gas plant maquette...89
Figure 4.4.1.1 E.ON electrolysis hydrogen station for the injection of hydrogen into the gas grid at Falkenhagen, Germany, showing the 2 MW electrolyzers installed by Hydrogenics ..92
Figure 4.4.1.2 Discharge time vs storage capacity of flywheels, batteries, compressed airenergy storage (CAES), pumped hydro storage (PHS), hydrogen (H2) and synthetic natural gas (SNG). Adapted from Specht et al. (2009)93

TABLES

Table ES.1 Selection of Power to Gas Demonstration Projects in Europe (Grond et al, 2013)..xxv
Table 2.2.1 Installed Calcor Technology Around the World (adapted from www.caloric.com/en/produkte/co-plants/co-plants.html) ..24
Table 2.2.2 Optimized CH4/CO2/H2O Feed Molar Ratio and Corresponding Parameters of Syngas. (Adapted from Demidov et al., 2011) ...26
Table 3.1.2.1 Present and Short Term Usage of CO2 (modified from Aresta et al. 2013).55
Table 3.3.2.1 Some Photocatalysts Found Possible Especially for SNG Production (Tahir and Amin, 2013a; Mao et al., 2013; Cybula et al., 2012; Wu et al., 2013; Varghese et al., 2009, Zhai et al., 2013, Li et al., 2010, Corma and Garcia, 2013, Mei et al., 2013, Li et al., 2012) ...63
Table 4.3.2 Selection of Demonstration Projects in Europe (Grond et al., 2013)91

SCHEMES

Scheme 2.2.1.1 Basics of Eley-Rideal and Langmuir-Hinshelwood mechanism in dry reforming. ..18
Scheme 2.2.1.2 Main approaches of catalyst design..18
Scheme 2.2.1.3 Schematic reaction network of carbon formation and TEM image of encapsulated nickel catalyst into whisker (adapted from Trimm, 1997).19
Scheme 2.3.2.1 Reaction pathways for methane partial oxidation to syngas........................28
Scheme 2.3.3.1 Flue gases value chain by the trireforming process.30
Scheme 2.3.4.1 Basic principle of SOEC for the co-electroreduction of CO2 and steam.32
Scheme 2.6.1 Schematic representation of the network of processes to syngas.....................46
Scheme 4.1 "Power to Gas" scenario ... 81
Scheme 4.2.2 Principle of water electrolysis with (a) alkaline, (b) PEM, and (c) SOEC cells. ... 83
Scheme 4.3.1 Power and gas grid network for different markets. .. 90