RETROFIT SUITABILITY OF COMPETING CO₂ CAPTURE TECHNOLOGIES

A techno-economic investigation commissioned by the members of the Carbon Dioxide Capture & Conversion (CO₂CC) Program

Client Private
December 2012
The Carbon Dioxide Capture & Conversion (CO₂CC) Program

The CO₂CC Program is a membership-directed consortium whose members are involved in the development, monitoring and utilization of the “state-of-the-art” in technological progress and commercial implementation of carbon dioxide capture/clean-up and conversion. By the direction of the member companies (through balloting and other interactive means), the program delivers a range of timely and insightful information and analyses which are accessible exclusively to members and protected by confidentiality agreements. The objective is to document technically and commercially viable options for CO₂ capture/clean-up as well as its conversion into useful products which meaningfully address the challenges posed by CO₂ life-cycle and overall sustainability issues.

Members receive three in-depth CO₂CC Techno-economic Reports which are written by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CO₂CC Communiqués (delivered via e-mail) which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CO₂CC Program Annual Meeting.

The Carbon Dioxide Capture & Conversion (CO₂CC) Program is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact John J. Murphy at John.J.Murphy@catalystgrp.com or +1.215.628.4447 (x1121).
CONTENTS

EXECUTIVE SUMMARY .. xvii

1. INTRODUCTION .. 1
 1.1 REPORT ORGANIZATION ... 1
 1.2 REPORT SCOPE AND OBJECTIVES ... 2
 1.3 IMPORTANT CRITERIA/FACTORS FOR EVALUATION (I.E., OPERATIONAL, ECONOMIC, ETC.) ... 2
 1.4 SELECTION OF REPRESENTATIVE TECHNOLOGIES ... 3
 1.5 REPORT CONTRIBUTORS ... 3

2. RETROFIT SUITABILITY OF SELECTED POST-COMBUSTION CAPTURE PROCESSES ... 7
 2.1 ALTERNATIVE PROCESSES FOR CONSIDERATION – LANDSCAPE OVERVIEW .. 7
 2.1.1 Oil Refineries and CO₂ Emissions ... 9
 2.1.2 Physical Sources of CO₂ Emissions from an Oil Refinery 11
 2.1.2.1 Utilities (electric power and process steam generation) 12
 2.1.2.2 Process heaters ... 13
 2.1.2.3 FCC and continuous coking processes ... 13
 2.1.2.4 Hydrogen production .. 13
 2.1.2.5 Summary .. 14
 2.2 SELECTION OF REPRESENTATIVE PROCESS: CHEMISORPTION GAS SCRUBBING (E.G., AMINE-BASED CO₂ CAPTURE SYSTEM) ... 15
 2.2.1 Critical Factors (based on design basis assumptions) .. 15
 2.2.1.1 Operational considerations ... 16
 2.2.1.2 Financial and economic considerations .. 20
 2.2.2 Overall Assessment: Retrofit Suitability ... 24
 2.2.3 Hurdles and Implications .. 28
 2.3 OUTLOOK FOR AMINE-BASED CO₂ CAPTURE RETROFIT 30
 2.4 REFERENCES ... 32

3. RETROFIT SUITABILITY OF SELECTED PRE-/OXY-COMBUSTION PROCESSES ... 35
 3.1 ALTERNATIVE PROCESSES FOR CONSIDERATION ... 35
 3.2 SELECTION OF REPRESENTATIVE PROCESS: OXY-FUEL APPROACH 38
3.2.1 Critical Factors (based on design basis assumptions) ... 46
3.2.1.1 Operational considerations ... 46
3.2.1.2 Financial and economic considerations .. 48
3.2.2 Overall Assessment: Retrofit Suitability ... 50
3.2.3 Hurdles and Implications .. 51
3.3 OUTLOOK FOR PRE-/-OXY-COMBUSTION RETROFIT 53
3.4 REFERENCES ... 53

4. RETROFIT SUITABILITY OF SELECTED “OTHER” PROCESSES 61
4.1 ALTERNATIVE PROCESSES FOR CONSIDERATION .. 61
4.2 SELECTION OF REPRESENTATIVE PROCESS: CACO₃ FLUIDISED BED APPROACH .. 64
4.2.1 Critical Factors (based on design basis assumptions) .. 64
4.2.1.1 Operational considerations ... 69
 4.2.1.1.1 CO₂ and SO₂ capture efficiency ... 71
 4.2.1.1.2 Emissions requirements .. 75
 4.2.1.1.3 Land/space requirements .. 75
 4.2.1.1.4 Utilities (heat, power, water, etc. and integration opportunities) 76
 4.2.1.1.5 Access to flue gas desulfurization (FGD) and/or selective catalytic reduction (SCR) .. 76
 4.2.1.1.6 Plant availability impacts .. 76
4.2.1.2 Financial and economic considerations .. 78
 4.2.1.2.1 LCOE (levelized cost of electricity), CO₂ avoided costs, CAPEX and OPEX .. 78
 4.2.1.2.2 Plant efficiency penalty .. 80
 4.2.1.2.3 External costs ... 80
4.2.2 Overall Assessment: Retrofit Suitability ... 80
4.2.3 Hurdles and Implications .. 81
4.3 OUTLOOK FOR SELECTED “OTHER” RETROFIT ... 81
4.4 REFERENCES ... 82

5. INDEX ... 87
FIGURES

Figure ES-1 World energy demand; projected demand growth and energy sources
(taken from the OECD/IEA World Energy Outlook, 2010) xviii
Figure 2.1.1 World energy demand; projected demand growth and energy sources.
(taken from the OECD/IEA World Energy Outlook, 2010) 7
Figure 2.1.2 Illustration of CO₂ Capture and Storage (CCS) technology chain.
Adapted from IEA, 2004 ... 8
Figure 2.1.3 Refinery CO₂ emissions breakdown by process (% m/m). Adapted from
CONCAWE, 2011 .. 12
Figure 2.1.4 CO₂ emissions point sources at a typical refinery. Adapted from van Straelen,
2010 .. 14
Figure 2.2.1 Schematic diagram of amine-based CO₂ capture process
(Drawn by author) .. 16
Figure 2.2.2 Costs of capture as a function of CO₂ concentration in flue gas.
Costs are based on the capture of 1000 kt/a CO₂; CO₂ recovery has been
optimized per case to between 85% and 90%. Adapted from van Straelen,
2010 .. 21
Figure 2.2.3 Costs of capture as a function of flue gas volume for a flue gas containing
8% CO₂. Adapted from van Straelen, 2010 .. 22
Figure 2.2.4 Overview costs of CO₂ capture with MEA from emissions point sources
at the typical refinery. Adapted from van Straelen, 2010 22
Figure 2.2.5 Marginal abatement curve CO₂ capture with MEA from emissions point
sources at the typical refinery used for this case study. Only sources
above 400 kt/a CO₂ are included in the curve. Adapted from van Straelen,
2010 .. 23
Figure 3.2.1 Schematic of generic oxy-fired boiler configuration 39
Figure 3.2.2 Sulphation conversion profiles under oxy-fired conditions for varied
concentrations of H₂O (with air-fired profiles overlaid) 45
Figure 4.1.1 Typical breakdown of CO₂ emissions from refineries worldwide by source,
after (Kuramochi, Ramírez et al. 2012) .. 61
Figure 4.1.2 Enthalpy/Entropy diagram for the steam cycle of a model power station
without CCS added ... 63
Figure 4.2.1 Basic flowsheet for the Ca-looping process (author’s own) 69
Figure 4.2.2 Drop in CO₂ uptake for Havelock limestone as a function of number
of cycles of calcination (redrawn from author’s own data) 70
Figure 4.2.3 Partial pressure of CO₂ above CaO as a function of temperature (drawn by the Author, thermodynamic parameters from (McBride, Zehe et al. 2002)) ... 71

Figure 4.2.4 The partial pressures of CO₂ in the exhaust gases from a variety of industrial sources (redrawn from (Kaarstad, Berger et al. 2011)) 72

Figure 4.2.5 Comparative CO₂ capture efficiencies from three different pilot plants (Sanchez 2011) ... 72

Figure 4.2.6 CO₂ capture as a function of time for the La Pereda pilot plant (part of the EU Caoling project) (Sánchez-Biezma, Diaz et al. 2012) 73

Figure 4.2.7 The extent of SO₂ capture in the calciner and carbonator of the Ca-looping system at La Pereda over a protracted period (Sánchez-Biezma, Diaz et al. 2012) .. 73

Figure 4.2.8 CO₂ uptake per cycle of carbonation of a UK limestone (Longcliffe). 650ºC carbonation, 900ºC calcination, 15% CO₂ in both, Δ550 ppm SO₂ present, ◊ no SO₂. Author’s own data. .. 74

Figure 4.2.9 The La Pereda pilot plant of the Caoling project (Courtesy of author) 77

TABLES

Table ES-1 The Primary CO₂ Emission Point Sources in a Complex Refinery (data taken from van Straelen et al, 2010) ... xix

Table ES-2 Summary of CO₂ Sources and Properties in an Oil Refinery (data from CONCAWE, 2011) .. xx

Table 2.1.1 Global stationary CO₂ fixed point emission sources Emissions from transportation sector not included, data from Gale, 2005 8

Table 2.1.2 The primary CO₂ emission point sources in a complex refinery, data taken from van Straelen et al 2010 ... 11

Table 2.1.3 Summary of CO₂ sources and properties in an oil refinery. Data from (CONCAWE, 2011) ... 14

Table 2.2.1 Process improvements based on parameter adjustment 17

Table 2.2.2 Overview utilities for capture plant (van Straelen, 2010) 24

Table 3.1.1 Processes which can benefit from oxygen enrichment or use of pure oxygen ... 37

Table 3.2.1 Comparison of burner gas compositions (wt. %), from Zhou and Moyeda (2010) ... 40

Table 3.2.2 Average measured SO₂/SO₃ concentrations (Maier et al, 2008) 41
Table 3.2.3 List of pilot plant oxyfuel FBC facilities (modified from Wall et al., 2012) ... 46
Table 3.2.4 Representative performance and economic data supercritical PC (air and oxy-fired) and IGCC (Chen et al, 2012) .. 50
Table 4.1.1 Estimated costs of decarbonisation from a variety of locations in an oil refinery (after (Kuramochi, Ramírez et al. 2012)) .. 62
Table 4.2.2 Summary of the technical issues for the key capture technologies in the context of a refinery (adapted from (Florin and Fennell (accepted))) 65
Table 4.2.3 Assessment technology readiness level (TRL) and technical issues for a variety of advanced technologies in the context of biomass combustion 68
Table 4.2.4 Costs for biomass combustion and calcium looping for a number of combinations of coal, biomass, calciner fuel and addition or not of ocean liming. Adapted from (Pignatelli et al., 2012). AC = Avoided cost. COE = $ 2011 .. 79