Oil-to-Chemicals: Technological Approaches and Advanced Process Configurations

Multi-Client Study Presentation
(Study Completed December 2017)

December 2017
Oil-to-Chemicals: Technological Approaches and Advanced Process Configurations

STUDY COMPLETED!

I. INTRODUCTION

This TCGR multi-client study was completed in December 2017. The study’s scope, and specific contents (as depicted in the ToC on pages 11-19) reflect the inputs from a group of “charter” subscribers who indicated their priorities for coverage, areas to be expanded/deepened and focal points for emphasis in opportunity identification. These are leading industrial integrated refiners and petrochemical producers and users.

There is a need for an objective assessment and detailed technological analysis of the activities directed towards oil-to-chemicals pursuits. It is clear that among the leading positions/approaches developed to date, notably by ExxonMobil and Saudi Aramco/SABIC, the full breadth of the potential need may not be addressed because each user will require a unique solution. Therefore it would be useful to evaluate the olefins and/or aromatic needs of chemical plants in reverse order, back towards the intake of crude oil using different existing and new technologies that may prove more economical at smaller scale than the massive CAPEX schemes currently being proposed by licensors, as solutions. Beyond these leading activities, numerous independent technology developers like UOP/Honeywell, Axens, CB&I and other majors are working towards combinations of technologies which can achieve a similar objective.

TCGR’s assessment, entitled “Oil-to-Chemicals: Technological Approaches and Advanced Process Configurations,” takes an end-market based approach, using numerous subscriber-defined process configurations, with the objective of documenting the available technologies, plus those in development (including the needed combinations) to maximize the return on conversion based on product slate (chemicals/petrochemicals and specialty/intermediates). Such optimization is required if such practices are expected to be competitive with low-cost thermal cracker routes as well as increasingly large aromatics complexes based on scale.

The results provide practitioners, developers and prospective partners/evaluators, especially the major global chemical (olefins, aromatics) producers, with the tools needed to evaluate technology options in specific case study applications, via mixing and matching unique solutions, in order to determine viability in practice or worthiness of further investment.

II. BACKGROUND

The movement towards the production of chemicals and petrochemicals such as olefins and aromatics directly from crude oil, as opposed to via thermal cracking of naphtha/ethane (for olefins) and via traditional refining reforming (for aromatics), is being driven by numerous
factors, the most important of which is the imbalance between demand for oil-derived liquid fuels (diesel, gasoline) and the more rapid growth in markets for petrochemicals like olefins (ethylene, propylene), aromatics (BTX) and specialty intermediate streams like C₄s and higher olefins. The imbalance has made the idea of using crude as a direct feedstock more appealing for integrated producers of fuels and chemicals as well as direct chemical companies.

Figure 1. The Imbalance between Growth for Oil-derived Fuels (Diesel, Gasoline) vs. Petrochemicals/Chemicals (Olefins, BTX, etc.) is Driving Crude-to-Chemicals Considerations

The technologies for these novel, and important, chemical/petrochemical production processes are being pursued by industry leaders like ExxonMobil and Saudi Aramco/SABIC, but also affect the competitiveness of peer participants, i.e. all chemical producers, as well as EPCs, process licensors and technology developers like CB&I, Axens, UOP/Honeywell. Added to this are traditional routes being potentially made uncompetitive, such as naphtha cracking, and there is strong, widespread and urgent interest in approaches to, and justification for, these opportunities/threats.

Depending on the crude oil feedstock, the avoidance of refinery fuels production and using specialty hydrocracking (HC) processes to naphtha or via fluid catalytic cracking (FCC) to olefins or BTX could provide lower costs than participating in the current/historical refinery value chain. As an example, CP Chem’s Aromax™ can provide BTX from olefins and the resid FCC unit could be more inexpensively tailored towards C₂⁺ and C₃⁺ olefins production, rather than the more costly and less selective steam cracking of naphtha.
In its completed multi-client study, entitled “Oil-to-Chemicals: Technological Approaches and Advanced Process Configurations,” TCGR takes a market-driven approach towards technology development, availability and implementation, to capture viable routes (including technology combinations) to allow the oil-to-chemicals practitioner to practice and profit from various feedstock conversion routes. The study’s breadth includes a range of crude oils (heavy to light) plus bio-crudes, as well as a range of product slates from propylene-focused to a mix of chemicals, including specialty/C₄s. Included are three major market segments for chemicals/petrochemicals from the processes: (1) olefins; (2) aromatics; and (3) specialty/intermediates (e.g., C₃ and higher olefins). The emphasis is on economically viable or developing technological solutions for cost-effective chemical/petrochemical supply via direct oil-to-chemicals routes.

Of particular interest to chemical producers is how from the end-product (e.g., BTX) can you back integrate into the best configuration for costs based on the crude oil type and are there attractive margins to consider these new configurations/combinations?

III. THE NEED FOR THE STUDY

The documentation to date has been centered on ExxonMobil and Saudi Aramco/SABIC comparisons, each of which has its own internally-derived rationale for pursuing oil-to-chemicals, whether it is taking advantage of the imbalance in growth rates between chemicals/petrochemicals and fuels or the need to further add value to crude oil resources providing higher rates of returns on investments. In many cases, others in the chemicals/petrochemicals industries may have different needs for the output or preferred routes/relationships with technology licensors or developers to get there. In TCGR’s independent, detailed technological assessment, analytical and critical perspectives are taken, across alternative approaches, to ensure that both the benefits and costs are considered. It will also highlight the state of availability/development of the technologies, alone or in combination, so that a mix and match approach can be assessed.

Today, most have only seen the reports from various sources, including IHS Chemicals’ Process Economics Program (PEP) which explains and benchmarks ExxonMobil’s Singapore plant compared against Saudi Aramco’s patents. Others may be familiar with recent references such as SABIC’s presentation at the ME-TECH (Feb. 2017; Dubai) and/or CB&I’s presentation from the MERTC conference (Jan. 2017; Bahrain). Notably, there is the Corma paper “Crude to Chemicals: Light Olefins from Crude Oil” (Catal. Sci. Technol., 2017, 7,12-46) which provides a review of resid FCC upgrading but does not adequately appreciate resid hydrocracking (HC) or catalytic steam cracker (CSR) advances, although there is a brief review of Sinopec’s catalytic pyrolysis process (CPP).
Figure 2. Refining Strategies to Maximize Light Olefins from Crude Oil

Table 1
Main Processes Dedicated to Crude Oil Cracking with Circulating Solids, Operating Conditions, and Ethylene Yields (adapted from Matsunami et al., Hydrocarbon Process., 1970, 49(11), 121-26)

<table>
<thead>
<tr>
<th>Licensor</th>
<th>BASF</th>
<th>BASF</th>
<th>Chiyoda chemical</th>
<th>UBE</th>
<th>Lurgi</th>
<th>Gulf/S&W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process/bed type</td>
<td>FB, 1 reactor</td>
<td>FB, reactor – regenerator</td>
<td>Fluid bed</td>
<td>Jet flow</td>
<td>Fluid bed</td>
<td>Fluid bed</td>
</tr>
<tr>
<td>Crude oil</td>
<td>Minas</td>
<td>Minas</td>
<td>Khafji</td>
<td>Minas</td>
<td>Irak</td>
<td>n/a</td>
</tr>
<tr>
<td>Heat supply</td>
<td>Crude partial combustion</td>
<td>Coke burning</td>
<td>Coke</td>
<td>Crude partial combustion</td>
<td>Coke burning</td>
<td>Coke burning</td>
</tr>
<tr>
<td>Particles in bed</td>
<td>Coke</td>
<td>Inorganic oxide</td>
<td>Coke</td>
<td>Inorganic oxide</td>
<td>Sand</td>
<td>Coke</td>
</tr>
<tr>
<td>Temperature/°C</td>
<td>725</td>
<td>760</td>
<td>850</td>
<td>840</td>
<td>760</td>
<td>750</td>
</tr>
<tr>
<td>C2–C4 olefins</td>
<td>41.5</td>
<td>41.5</td>
<td>37.6</td>
<td>47.8</td>
<td>41.6</td>
<td>n/a</td>
</tr>
<tr>
<td>Ethylene</td>
<td>23</td>
<td>25</td>
<td>26.8</td>
<td>28.1</td>
<td>23.1</td>
<td>22.5</td>
</tr>
<tr>
<td>Propylene</td>
<td>12.5</td>
<td>11.2</td>
<td>5.8</td>
<td>11.3</td>
<td>12.8</td>
<td>13.9</td>
</tr>
</tbody>
</table>

Source: Corma, 2017
Key questions addressed in the study include how chemical companies can target this technology opportunity - from an olefins and aromatics/ BTX chemical plant feedstock point of view - but enhance the olefins and/or BTX yields even higher through retrofit catalysts and known process technology incremental revamps?

What is needed is to document recent catalyst and process advances relevant to olefins and BTX chemical products that avoid the upfront investment in catalytic distillation units (CDUs) and vacuum distillation units (VDUs) and other parts of the refinery while maximizing BTX and olefin yields (primarily C3+, and C4+) beyond typical refinery economics and normal/known process configurations that have historically been optimized for fuels production.

Table 2

Analysis of Crude to Chemicals Complexes: Case Studies

<table>
<thead>
<tr>
<th>Source: CB&I, 2017</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Minimum Investment; No Resid Upgrader; No Fuels; Sell HSFO</th>
<th>LC-FINING; No Fuels; Sell LSFO</th>
<th>LC-FINING With Fuels; Sell LSFO</th>
<th>LC-FINING With Fuels; Sell LSFO - Two Train Cracker</th>
<th>LC-FINING With Fuels; Sell LSFO - No Fuels; Produce Anode Coke</th>
<th>LC-Skurry With Fuels; Produce ULSFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude (Arab Light), BPD</td>
<td>195,000</td>
<td>162,000</td>
<td>227,000</td>
<td>400,000</td>
<td>137,689</td>
</tr>
<tr>
<td>Ethylene, KTA</td>
<td>2,000</td>
<td>2,000</td>
<td>2,000</td>
<td>4,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Propylene, KTA</td>
<td>1,480</td>
<td>1,493</td>
<td>1,469</td>
<td>2,805</td>
<td>1,481</td>
</tr>
<tr>
<td>Butadiene, KTA</td>
<td>357</td>
<td>358</td>
<td>347</td>
<td>774</td>
<td>373</td>
</tr>
<tr>
<td>Euro VI Diesel, BPD</td>
<td>0</td>
<td>0</td>
<td>74,500</td>
<td>94,265</td>
<td>0</td>
</tr>
<tr>
<td>Fuel Oil, BPD</td>
<td>54,000</td>
<td>25,000</td>
<td>20,000</td>
<td>36,935</td>
<td>0</td>
</tr>
<tr>
<td>Anode Coke, KTA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>194</td>
</tr>
<tr>
<td>H2 Required, MMSCFD</td>
<td>167</td>
<td>251</td>
<td>379</td>
<td>665</td>
<td>282</td>
</tr>
<tr>
<td>% Required H2 from Cracker</td>
<td>39</td>
<td>26</td>
<td>18</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>Natural Gas Required, KTA</td>
<td>596</td>
<td>777</td>
<td>1,011</td>
<td>1,872</td>
<td>794</td>
</tr>
<tr>
<td>Chemical Yield on Crude, %</td>
<td>58</td>
<td>70</td>
<td>49</td>
<td>57</td>
<td>83</td>
</tr>
<tr>
<td>Total Project Cost, MM$</td>
<td>6,954</td>
<td>7,995</td>
<td>8,910</td>
<td>14,173</td>
<td>8,492</td>
</tr>
<tr>
<td>%IRR</td>
<td>14.6</td>
<td>22.4</td>
<td>24.4</td>
<td>33.0</td>
<td>21.4</td>
</tr>
</tbody>
</table>

Notes

1. 3%S HSFO 1%LSFO 1%LSFO 1%LSFO Anode Coke 0.1%S ULSFO
2. All cases includes Hydrocracker + Olefins Conversion Technology
3. All cases produces MTE, Butene-1 Benzene, Xylenes
4. 3%S HSFO priced at $21/bbl less than crude
5. %IRR based on 70/30 debt/equity ratio

Source: CB&I, 2017

IV. SCOPE AND METHODOLOGY

Oil-to-chemicals routes for three (3) product groups, via numerous case study approaches, are addressed as follows: 1) olefins; 2) aromatics; and 3) specialty/intermediates (e.g., C4s and higher olefins)

The study includes coverage addressing:
- Upstream to the feedstock/oil source, in order to differentiate between pre-treatment steps (if required)
 - Heavy/sour crudes: S. America, Russia/Urals; Canadian tar sands; opportunity crudes
- Product slate via technology approach, i.e., %olefin by carbon (C₂, C₃, C₄, etc.).
 - Ethylene, propylene, C₄ and higher olefins
- Implications on technology implementers, to assess economic/financial metrics (CAPEX, product costs, ROI, etc.)
 - Steam cracker modifications, combinations/integrations, etc.
- Advancements in technology (catalysts, processes, combinations) yielding novel options for consideration/evaluation in retrofit
- Impacts on technology developers and users, to gauge readiness levels and timing of commercial impacts
 - Practitioners, licensors, developers, etc.
- Potential end-market and competitor/supplier implications, indicating likely winners and losers
 - Optimal crude/product combinations, integrated vs. independent suppliers, etc.

The scope includes numerous process configurations, some of which are proposed by the study’s “charter” subscribers (i.e., those who committed to supporting it prior to formal launch), with consideration of the following:

- Modified steam crackers; catalytic steam cracking
- Gasoil/steam cracking, gasoil/HSFCC
- Resid FCC: Multiple riser systems, R2R, Milos (Shell), HSFCC (Axens)
- Hydrocracker/FCC; Flexicoking/FCC; FCC/Reforming
- H-Oil and slurry HC (IFP); LC Fining (Lummus/CB&I)
- Hydroconversion upgrader (GHU, Genoil)
- Ebullated bed – EST (Eni)
- Pyrolysis catalytic cracking (PCC)
- Deep catalytic cracking (DCC)
- Aromax (CP Chem), Cyclar (UOP/Honeywell), etc.
- Others
Table 3
Representative Advances in Oil-to-Chemicals Technologies: Upping Olefins and BTXs

| Heavy Oil/Bitumen Canada Upgrading Technologies | • Pyrolysis Upgrading.
 - Ivanhoe HTL, piloted in CA
 - WESCO's CJP Process
 - USP Process by Value Creation
 - CPP, Sinopec | • Slurry Hydrocracking.
 - ENI, EST Process.
 - HCAT, Heatwaters/HTI
 - HRH, Mobis
 - GHU, Genoil, perhaps slurry modified
 - UOP, Uniflex, Fe based ex PetroCanada
 - Chevron, Slurry HC. |
| --- | --- | --- |
| FCC and Cracking Advances | • R2R Advances, TOTAL/S&W
 • Indmax, IOC
 • HSFCC, Aramco/Axens, including downstream dimerization
 • DCC Advances, Sinopec/S&W
 • Regular FCC, two riser e.g. Milos. |
| Cold (Sonic) Cracking | • Sonoprocess, Petrosonic
 • CCU, Pristec
 • CCC, Bayshore Petroleum |
| Novel Pipeline Processes (all to pilot or commercial) | • Gasolfin, InovaCat, naphtha to olefins/BTX swing fixed bed.
 • Gasolin Equivalent, Chiyoda Corp, Japan
 • Maxene, UOP, naphtha/paraffins pretreat to up olefins.
 • Olefin/Paraffin Membranes separations
 - Permylene, Intex
 - Optiperm, CMS, Compact Membrane Systems
 - ECN, Amsterdam
 • ACO Process, KBR/SK, naphtha to olefins | • Corrillo feedstock separation process
 • DSU Process, Molten Na separation of metals and S
 • Shock Wave Reactor, Hydrodynamics Inc. (vs. thermal cracker
 • Cyclar Upgrades, UOP
 • Aromax Upgrades, CP Chem. |

Source: TCGR, 2017

Via a market-driven approach documenting detailed technological assessments (including combinations) as determined by the industry’s leading participants as “charter” subscribers, TCGR’s study presents a state-of-the-art assessment in oil-to-chemicals approaches to addressing the imbalance between olefin supply/demand in this uncertain but opportunistic period.

TCGR uses in-house and external resources, as well as expertise from within industry as well as our highly-regarded DIALOG GROUP® in order to complete:
- Technology evaluations
- Patent reviews and analyses
- Representative economics
- Market needs/drivers
- Competitive implications (developers vs. users)

A refined/expanded Table of Contents is provided on pages 11-19 in order to depict the breadth and depth of the study as envisioned.

References
CB&I, 2017; Crude to Chemicals: Opportunities and Challenges of an Industry Game-Changer;
MERTC, Bahrain
IEA, 2016
IHS, 2016
OPEC, 2016
Platts, 2016
V. QUALIFICATIONS

The Catalyst Group Resources, a member of The Catalyst Group, works with clients to develop sustainable competitive advantage in technology-driven industries such as chemicals, refining, petrochemicals, polymers, specialty/fine chemicals, biotechnology, pharmaceuticals, and environmental protection. We provide concrete proven solutions based on our understanding of how technology impacts business.

Using our in-depth knowledge of molecular structures, process systems, and commercial applications, we offer a unique combination of business solutions and technology skills through a range of client-focused services. Often working as a member of our clients' planning teams, we combine our knowledge of cutting-edge technology with commercial expertise to:

- Define the business and commercial impacts of leading-edge technologies
- Develop technology strategies that support business objectives.
- Assess technology options through strategy development, including:
 - Independent appraisals and valuations of technology/potential
 - Acquisition consulting, planning and due diligence
- Provide leading-edge financial methodology for shareholder value creation
- Lead and/or manage client-sponsored R&D programs targeted through our opportunity identification process.
- Provide leading information and knowledge through:
 - World-class seminars, conferences and courses
 - Timely technical publications

The client-confidential assignments conducted by The Catalyst Group include projects in:
- Reinventing R&D pipelines
- Technology alliances
- Technology acquisition
- Market strategy

We have built our consulting practice on long-term client relationships, dedication, and integrity. Our philosophy is clear and focused:

\[\text{We Provide the "Catalysts" for Business Growth by Linking Technology and Leading-Edge Business Practices to Market Opportunities}\]
VI. DELIVERABLES AND PRICING

This report is timely and strategically important to those industry participants and observers both monitoring and investing in the development and implementation of technologies for the conversion of oil-to-chemicals. TCGR’s report, based on technology evaluations, commercial/market assessments and interviews with key players goes beyond public domain information. As a result, subscribers are requested to complete and sign the “Order Form and Secrecy Agreement” on the following page.

The study, “Oil-to-Chemicals: Technological Approaches and Advanced Process Configurations” was completed in December, 2017.

Post-production subscribers after December, 2017 $23,500

Oil—to–Chemicals: Technological Approaches and Advanced Process Configurations

Report in PDF format, in addition to subscription price $1,000

* Charter subscribers (those who signed up for the study before its launch) had the opportunity to work with TCGR to further refine the scope of the report by nominating specific process/configuration content as well as delineating areas of particular interest for inclusion in the assessment.
ORDER FORM AND SECRECY AGREEMENT

The Catalyst Group Resources, Inc. Tel: +1.215.628.4447
Gwynedd Office Park Fax: +1.215.628.2267
P.O. Box 680 e-mail: tcgr@catalystgrp.com
Spring House, PA 19477 - USA - website: www.catalystgrp.com

Please enter our order for “Oil-to-Chemicals: Technological Approaches and Advanced Process Configurations,” completed in December, 2017, as follows:

___ “Oil-to-Chemicals: Technological Approaches and Advanced Process Configurations,” for $23,500 (post production)

___ Please enter our order for the study to be delivered in PDF (Adobe Acrobat) format for use across our sites/locations (i.e., site license) for an additional $1,000.

___ Please send us ______ additional printed copies @ $250 each.

In signing this order form, our company agrees to hold this report confidential and not make it available to subsidiaries unless a controlling interest (>50%) exists.

Signature: ______________________________________ Date: ______________________
Name: __ Title: ______________________
Company: __
Billing Address: ___
Shipping Address (no P.O. Boxes): ___

Express delivery services will not deliver to P.O. Boxes
City: __ State/Country: _______________
Zip/Postal Code: ________________________________ Phone: _____________________
E-mail: __ Fax: _______________________

This report and our study findings are sold for the exclusive use of the client companies and their employees only. No other use, duplication, or publication of this report or any part contained herein is permitted without the expressed written consent of The Catalyst Group Resources.
Oil-to-Chemicals: Technological Approaches and Advanced Process Configurations

CONTENTS

SECTION I. INTRODUCTION/BACKGROUND ... 1
 A. INTRODUCTION ... 1
 B. BACKGROUND .. 1
 C. THE NEED FOR THE STUDY ... 3
 D. THE STUDY TEAM ... 5
 E. GLOSSARY OF TERMS AND ABBREVIATIONS ... 6
 F. REFERENCES .. 7

SECTION II. EXECUTIVE SUMMARY .. 9
 A. THE NEED FOR OIL-TO-CHEMICALS: OPPORTUNITY CRUDES, MARKETS AND DRIVERS .. 10
 B. OIL-TO-CHEMICALS: OLEFINS ... 11
 C. OIL-TO-CHEMICALS BEYOND THE STEAM CRACKER AND FCC: ON PURPOSE OLEFINS AND AROMATICS .. 12
 D. OIL-TO-SPECIALTY/INTERMEDIATE STREAMS (C₄ AND HIGHER PRODUCTS) ... 13
 E. COMPETITIVE AND STRATEGIC IMPLICATIONS ... 14
 F. REFERENCES .. 15

SECTION III. THE NEED FOR OIL-TO-CHEMICALS: OPPORTUNITY CRUDES, MARKETS AND DRIVERS ... 17
 A. OPPORTUNITY CRUDES AND CRUDE PRICE DIFFERENTIALS 19
 B. THE MARKETS ... 22
 C. ADVANCES IN CRACKING AND UNCONVENTIONAL OLEFIN AND BTX SWING PROCESSES ... 24
 1. TCGR’s Analysis and Brainstorming Sessions ... 27
 2. Results of Brainstorming Sessions .. 28
 D. SUMMARY ... 29
 E. REFERENCES .. 30
SECTION IV. OIL-TO-CHEMICALS: OLEFINS... 31

A. EXXONMOBIL “OIL-TO-CHEMICALS” STEAM CRACKING PROCESS 31
 1. Background and Assumptions ... 31
 2. Process Flow and Description ... 34
 3. Estimated Economics ... 37
 4. Sensitivity Analysis .. 40
 5. Summary and Conclusions .. 45

B. SAUDI ARAMCO/SABIC “OIL-TO-CHEMICALS” APPROACH 47

C. FCC OLEFINS PRODUCTION OVERVIEW .. 48
 1. Overview and Economic Pinch Points .. 49
 2. Licensed FCC Technology ... 52
 3. Issues/Challenges ... 60

D. FCC MODIFIED FOR OLEFINS PRODUCTION .. 62
 1. Sinopec DCC (Deep Catalytic Cracking) Process 62
 2. Sinopec CPP (Catalytic Pyrolysis Process) .. 67
 4. TechnipFMC and Axens ... 73
 5. Aramco, KFUPM, Nippon, TechnipFMC, Axens: HS-FCC Process 76
 6. UOP PetroFCC Process... 78
 7. Shell Global Solutions - MILOS ... 80

E. CRACKING TIGHT-OILS IN FCC UNITS .. 81

F. ON-PURPOSE PROPYLENE PRODUCTION ... 84
 1. Oleflex ... 85
 2. Catofin/Catadiene Catalyst and Process Improvements (HGM) 87
 3. Dow FCDh Process .. 89

G. CONCLUSIONS ... 91

H. REFERENCES ... 92

SECTION V. OIL-TO-CHEMICALS BEYOND THE STEAM CRACKER AND FCC: ON PURPOSE OLEFINS AND AROMATICS ... 95

A. REACTOR DESIGN/PROCESS ADVANCES ... 95
 1. Radial Flow Reactors (RFR) for Catalytic Olefins Production 95
 2. Coolbrook RDR (RotoDynamicReactor) Process 104
B. CATALYTIC DISTILLATION .. 108
1. Application of CD-Hydro in Advanced Olefin Separation 109
C. OTHER NEW OLEFIN PROCESSES ... 110
1. Advanced Catalytic Olefin Process (ACO) .. 110
2. Inovacat GASOLFIN Technology .. 112
3. Chiyoda Fixed-Bed BTX/Olefins Swing Process ... 115
4. Asahi Kasei/TechnipFMC OMEGA Process ... 115
D. ON-PURPOSE AROMATICS PROCESSES .. 117
1. Aromax Technology ... 117
2. Cyclar Technology by UOP ... 120
3. GTC GT-G2A and GT-BTX PluS® Processes .. 123
E. NEW SEPARATIONS PROCESSES .. 124
1. UOP “MaxEne” Separation Technology .. 124
2. Corrillo Separation Scheme .. 126
3. Membranes in Separations: Pemrylene from Imtex 127
4. Membranes in Separations: Optiperm from Compact Membrane Systems (CMS) .. 132
F. SONO-CHEMICAL APPLICATIONS OF CONTROLLED FLOW CAVITIES 136
G. CONCLUSIONS .. 136
H. REFERENCES .. 137

SECTION VI. OIL-TO-SPECIALTY/INTERMEDIATE STREAMS (C4 AND HIGHER PRODUCTS) .. 141
A. HISTORICAL AND CURRENT APPROACHES ... 142
B. ADVANCEMENTS AND ENABLING TECHNOLOGIES 146
1. Hydrogen Separation Membranes ... 146
2. Pervaporation (PV) and Vapor Permeation (VP) .. 149
3. Ethers ... 152
C. REMAINING HURDLES (TECHNICAL, ECONOMIC) 155
D. ASSESSMENT ... 157
E. REFERENCES .. 158

SECTION VII. COMPETITIVE AND STRATEGIC IMPLICATIONS 159
A. PROSPECTS FOR ECONOMICALLY VIABLE OIL-TO-CHEMICALS (OTC) ROUTES .. 162
1. Ethylene Production ... 162
2. Propylene Production ... 164
3. C4+ Value Added .. 165
4. The Use of Lighter vs. Heavier Feedstocks in Oil-to-Chemicals (OtC) 166
B. NEW TECHNOLOGIES/MIXED SOLUTIONS ... 167
C. POSSIBLE OIL-TO-CHEMICALS CONFIGURATIONS ... 168
 1. Chemicals only producer, focused on olefins and/or BTX ... 168
 2. Integrated chemicals producer, seeking to maximize site margins 169
 3. Refinery only, seeking to maximize chemicals margins ... 170
D. COMPETITIVE AND MARKET REACTIONS TO CHANGES ... 170
E. RECOMMENDATIONS AND CONCLUSIONS ... 171
F. REFERENCES ... 172

FIGURES

Figure I-A-1 The Imbalance between Growth for Oil-derived Fuels (Diesel, Gasoline) vs. Petrochemicals/Chemicals (Olefins, BTX, etc.) is Driving Crude-to-Chemicals Considerations .. 2
Figure I-C-1 Refining Strategies to Maximize Light Olefins from Crude Oil 4
Figure II-I Oil-to-Chemicals: Where is Added Value ... 10
Figure III-1 Lummus-SRT Cracking™ Flow Scheme (Meyers, 2005) 18
Figure III-2 Typical ISBL installed cost (Meyers, 2005) .. 18
Figure III-A-1 The Imbalance between Growth for Oil-derived Fuels (Diesel, Gasoline) vs. Petrochemicals/Chemicals (Olefins, BTX, etc.) is Driving Crude-to-Chemicals Considerations 19
Figure III-A-2 Change in global liquid fuels production since January 2016 20
Figure III-A-3 Spot crude oil price differentials (light vs. heavy) 21
Figure III-A-4 Density and sulfur content of selected crude oils .. 21
Figure III-B-1 Ethylene, Methanol and Propylene Expanding at a Rapid Pace 22
Figure III-B-2 Regional Benzene Consumption by Derivative .. 23
Figure III-B-3 World Paraxylene Supply-Demand 2011-2017 ... 23
Figure III-B-4 Ethane cash cost advantage is significant and sustainable 24
Figure III-C-1 Refining strategies to maximize light olefins from crude oil (Corma, 2017) ... 25
Figure III-C-2 Envisioned Process Configuration... 29
Figure IV-A-1 Process Flow diagram, with Flash Drum (US7588737) ... 34
Figure IV-A-2 Condensing Coils with Flash Drum (US7767170) ... 35
Figure IV-A-3 Heat Recovery from the Flash Drum (US8158840) ... 36
Figure IV-A-4 Bottom Recycle Stream (US8435386) .. 36
Figure IV-A-5 Crude Price Sensitivity for Greenfield Plant ... 43
Figure IV-A-6 Fuel Gas Price Sensitivity for Greenfield Plant ... 44
Figure IV-A-7 Propylene Price Sensitivity for Greenfield Plant .. 44
Figure IV-A-8 Capital Cost Sensitivity for Retrofit Plant .. 45
Figure IV-C-1 Orthoflow FCC converter (Meyers, 2004) ... 54
Figure IV-C-2 Vapor recovery unit (Meyers, 2004) ... 56
Figure IV-C-3 SSW IFP RFCC unit process diagram (Meyers, 2004) .. 57
Figure IV-C-4 Side-by-side regenerator RFCC revamp design (Meyers, 2004) 58
Figure IV-D-1 DCC Thai Petrochemical Industries (SSW, 2007) ... 63
Figure IV-D-2 Block flow diagram of a typical DCC unit for olefins production and recovery (Dharia, et al., 2004) ... 66
Figure IV-D-3 CPP commercial prototype (SSW, 2007) ... 68
Figure IV-D-4 CPP pyrolysis gas purification and separation project (SSW, 2007) 69
Figure IV-D-5 Typical yields range for ethylene and propylene for RIPP/SSW DCC and CPP processes (SSW, 2007) ... 70
Figure IV-D-6 The scheme of crude to petrochemicals (Wang et al., 2006) 71
Figure IV-D-7 Variation for Propylene from Resid – R2P .. 74
Figure IV-D-8 Technip FMC/Axens Single Regenerator Design .. 76
Figure IV-D-9 HS-FCC Retrofit to 2 Stage Regenerator ... 78
Figure IV-D-10 Shell Milos Distillate + Olefins .. 80
Figure IV-F-1 Oleflex process flow (Meyers, 2005) .. 86
Figure IV-F-2 Cyclic operation of a Catofin and Catadiene dehydrogenation reactor 89
Figure IV-F-3 Propane conversion over Catofin PS catalyst with and without HGM at the same pilot plant conditions ... 89
Figure IV-F-4 The Dow Catalytic Dehydrogenation Process is a Platform Reactor Technology ... 90
Figure IV-F-5 Current Commercial PDH Technologies and Dow Fluidized Catalytic Dehydrogenation (FCDh) .. 91
Figure V-A-1 New catalytic route to lower olefins ... 95
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-A-2</td>
<td>Conceptual reactor scheme</td>
<td>96</td>
</tr>
<tr>
<td>V-A-3</td>
<td>Gibbs Free energy of formation of hydrogen</td>
<td>97</td>
</tr>
<tr>
<td>V-A-4</td>
<td>Thermodynamics for paraffins to olefins</td>
<td>98</td>
</tr>
<tr>
<td>V-A-5</td>
<td>Commercial equipment for high throughput catalyst testing</td>
<td>99</td>
</tr>
<tr>
<td>V-A-6</td>
<td>Thin film concept</td>
<td>99</td>
</tr>
<tr>
<td>V-A-8</td>
<td>Operational Comparison: Thermal Cracking to RDR</td>
<td>106</td>
</tr>
<tr>
<td>V-B-1</td>
<td>Catalytic Distillation Reactor with Internal</td>
<td>108</td>
</tr>
<tr>
<td>V-B-2</td>
<td>Tentative new technology separation scheme</td>
<td>109</td>
</tr>
<tr>
<td>V-C-1</td>
<td>Advanced Catalytic Olefin production (ACO)</td>
<td>111</td>
</tr>
<tr>
<td>V-C-2</td>
<td>Process Flow: Advanced Catalytic Olefin Process (ACO)</td>
<td>111</td>
</tr>
<tr>
<td>V-C-3</td>
<td>Inovacat GASOLFIN process</td>
<td>113</td>
</tr>
<tr>
<td>V-C-4</td>
<td>OMEGA Block Flow Diagram</td>
<td>116</td>
</tr>
<tr>
<td>V-C-5</td>
<td>Typical Yield of OMEGA Process Using C₄ raffinate-1 as Feedstock</td>
<td>116</td>
</tr>
<tr>
<td>V-D-1</td>
<td>Aromax technology by CP Chem</td>
<td>118</td>
</tr>
<tr>
<td>V-D-2</td>
<td>Aromax yield composition in %wt.</td>
<td>119</td>
</tr>
<tr>
<td>V-D-3</td>
<td>Diagram of Cyclar process</td>
<td>120</td>
</tr>
<tr>
<td>V-D-4</td>
<td>Benzene plus mixed xylenes from C₃/C₄s</td>
<td>121</td>
</tr>
<tr>
<td>V-D-5</td>
<td>Applying “Cyclar” + “Tatoray” technology</td>
<td>121</td>
</tr>
<tr>
<td>V-D-6</td>
<td>FCC Gasoline Desulfurization Technology – GT-BTX PluS</td>
<td>123</td>
</tr>
<tr>
<td>V-D-7</td>
<td>Gas to Aromatics – GT-G2A</td>
<td>124</td>
</tr>
<tr>
<td>V-E-1</td>
<td>“Maxene” process flow diagram</td>
<td>125</td>
</tr>
<tr>
<td>V-E-2</td>
<td>Comparing two pretreatment schemes</td>
<td>127</td>
</tr>
<tr>
<td>V-E-3</td>
<td>Ag containing membrane systems</td>
<td>129</td>
</tr>
<tr>
<td>V-E-4</td>
<td>Ethylene recovery - distillation vs membrane</td>
<td>130</td>
</tr>
<tr>
<td>V-E-5</td>
<td>“Permylene” application for 1-butene recovery</td>
<td>131</td>
</tr>
<tr>
<td>V-E-6</td>
<td>“Optiperm” data for Propene/Propane separation</td>
<td>133</td>
</tr>
<tr>
<td>V-E-7</td>
<td>Propene recovery system with “Optiperm”</td>
<td>134</td>
</tr>
<tr>
<td>V-E-8</td>
<td>PP reactor purge flowheet</td>
<td>135</td>
</tr>
<tr>
<td>VI-A-1</td>
<td>Block flow diagram of process routes for the separation and conversion of C₄ hydrocarbons</td>
<td>142</td>
</tr>
<tr>
<td>VI-A-2</td>
<td>Process value chain analysis of FCC C₄ (top figure, 5A) and SC C₄ (bottom figure, 5B)</td>
<td>144</td>
</tr>
</tbody>
</table>
Figure VI-A-3 Margin/value-added chain based on crude SC C₄ feedstock ... 145
Figure VI-A-4 Margin/value-added chain of the process based on FCC feedstock, Case 2 .. 145
Figure VI-B-1 Hydrogen membrane system: Air Liquide MEDAL™ ... 147
Figure VI-B-2 Hydrogen membrane system: GENERON ... 147
Figure VI-B-3 PRISM Membrane separators contain thousands of hollow fibers 147
Figure VI-B-4CSIRO membrane to recover H₂ from ammonia as a new route of hydrogen transportation ... 148
Figure VI-B-5 Membrane Pervatech Energy save (25%-75%) ... 150
Figure VI-B-6 ECN membrane .. 150
Figure VI-B-7 GFT scheme methanol/organic solvent separations .. 151
Figure VI-B-8 The solvent dehydrating “SolvSep solution” (MTR) relies on a robust zeolite membrane have pore of 2.9Å able to reduce the content of water of organic solvents from 15wt% down to 0.1-1wt% range .. 151
Figure VI-C-1 Projected growth of α-olefins .. 156
Figure VI-C-2 Ethane to ethylene fuel cell .. 157
Figure VII-1 Chemicals demand expands with rising incomes ... 160
Figure VII-2 Chemicals demand favors oil and gas ... 160
Figure VII-3 Ethylene cash cost comparison .. 161
Figure VII-4 Methane to Ethylene: Siluria Direct C₁ Conversion .. 161
Figure VII-5 North America propylene production .. 162
Figure VII-B-1 Announced Crude to Chemicals Complexes ... 167
Figure VII-C-1 Envisioned Process Configuration .. 169
Figure VII-C-2 Conceptional Catalytic Olefin Production Process Steps ... 169

TABLES
Table I-C-1 Crude to Chemicals Complexes: Selected Case Studies... 5
Table II-D-1 Oil-to-Chemicals: Comparison Between Configurations .. 14
Table II-E-1 OtC SWOT Analysis ... 15
Table III-C-1 FCC related processes for petrochemicals and related technology 26
Table III-C-2 TCGR Brainstorm Process for Review .. 27
Table IV-A-1 Example Crudes and Condensates .. 32
Table IV-A-2 OSO Condensate Assay Data .. 33
Table IV-A-3 Economic Basis (Crude: 50$/bbl, Natural Gas: 6$/MM Btu) 37
Table IV-A-4 Retrofit Economics – Base Case... 38
Table IV-A-5 Greenfield Economics – Base Case ... 39
Table IV-A-6 Retrofit Economics – Sensitivity Analysis .. 41
Table IV-A-7 Greenfield Economics – Sensitivity Analysis... 42
Table IV-A-8 Representative Economics: Steam Cracking of Ethane 46
Table IV-A-9 Representative Economics: Steam Cracking of Naphtha 47
Table IV-C-1 Typical Cracking Yields .. 52
Table IV-C-2 Heavy-Feed Processing Capabilities of Various Heat Rejection Systems 59
Table IV-C-3 Investment Cost of Incremental Propylene .. 61
Table IV-D-1 Licensed DCC Units ... 64
Table IV-D-2 Typical Operating Parameters for a DCC Unit Compared with FCC and Steam Cracking Units ... 65
Table IV-D-3 DCC Light Olefin Yields .. 67
Table IV-D-4 CPP - Main Operating Parameters ... 68
Table IV-D-5 CPP - Product Distribution and Olefin Yields ... 69
Table IV-D-6 Key Economic Data for a CPP Integrated Olefins Plant 71
Table IV-D-7 KBR Modified FCC for Max Olefins .. 72
Table IV-D-8 Maxofin Olefin Yields ... 73
Table IV-D-9 Grassroots High Propylene FCC Units ... 75
Table IV-D-10 Comparison of DCC and Metathesis on Olefins ... 75
Table IV-D-11 Effect of recycling spent catalyst to the feed riser 79
Table IV-E-1 Cracking Results at 970°F (wt%) LTO vs VGO ... 81
Table IV-E-2 Yields of Utica Crude Oil and Fractions ... 82
Table IV-E-3 Testing Utica ATB (650°F plus) .. 82
Table IV-E-4 Cracking Utica Shale .. 83
Table IV-E-5 Inferred yields, Utica shale ... 83
Table IV-E-6 FCC products yields comparison: projected results for a 40,000 bpd unit (5760 tpd) at 77% gas oil conversion (values in tpd) .. 84
Table IV-F-1 Main Sources of Propylene ... 85
Table IV-F-2 Oleflex Economics .. 87
Table IV-F-3 Properties of catalyst samples taken from the same commercial plant show the improvement in stability of the latest generation catalyst 88
Table V-A-1 Conventional steam cracking economics .. 102
Table V-A-2 Economics for the RFR for making olefins .. 103
Table V-A-3 Comparing conventional steam cracking with new RFR for olefins 104
Table V-A-4 Comparison of Thermal Cracking to RDR .. 106
Table V-A-5 Comparison of Business Potential: Naphtha Cracking vs. RDR 107
Table V-C-1 Commercial Status of ACO ... 110
Table V-C-2 Typical Yield Selectivities: FCC full range naphtha 113
Table V-C-3 Economics of GASOLFIN process .. 114
Table V-C-4 Comparison of catalytic performance of different MFI-type zeolites 115
Table V-C-5 OMEGA Increases Operating Margin ... 117
Table V-D-1 Aromax economics ... 119
Table V-D-2 Cyclar Product Distribution ... 122
Table V-D-3 Cyclar economics .. 122
Table V-E-1 Impact on Olefin Yields ... 126
Table V-E-2 Impact on Aromatic Yields ... 126
Table V-E-3 Overall MaxEne Economic Impact ... 126
Table V-E-4 Comparison of 1-Butene Separation Benefits 131
Table V-E-5 Economics of distillation and membranes .. 132
Table V-E-6 Feed impurities for Olefin-Paraffin membranes 134
Table V-E-7 Preliminary Economics .. 135
Table VI-1 Typical composition of SC C₄, FCC C₄ and field butane feedstock 141
Table VI-B-1 Catalyst Performance Comparison in the Production of MTBE 153
Table VII-A-1 Comparison of Olefin Production Processes: Oil-to-Chemicals and Others .. 163
Table VII-A-2 Propylene Sources (% of Total) ... 164
Table VII-A-3 Investment Cost of Incremental Propylene 165
Table VII-A-4 Comparison of On-Purpose Propylene Processes 165
Table VII-D-1 Oil-to-Chemicals (OtC) SWOT Analysis ... 170