CO₂ UTILIZATION IN REFORMING

A techno-economic investigation
commissioned by the members of the
Carbon Dioxide Capture & Conversion (CO₂CC) Program

Client Private
December 2017
The Carbon Dioxide Capture & Conversion (CO\textsubscript{2}CC) Program

The CO\textsubscript{2}CC Program is a membership-directed consortium whose members are involved in the development, monitoring and utilization of the “state-of-the-art” in technological progress and commercial implementation of carbon dioxide capture/clean-up and conversion. By the direction of the member companies (through balloting and other interactive means), the program delivers a range of timely and insightful information and analyses which are accessible exclusively to members and protected by confidentiality agreements. The objective is to document technically and commercially viable options for CO\textsubscript{2} capture/clean-up as well as its conversion into useful products which meaningfully address the challenges posed by CO\textsubscript{2} life-cycle and overall sustainability issues.

Members receive three in-depth CO\textsubscript{2}CC Techno-economic Reports which are written by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CO\textsubscript{2}CC Communiqués (delivered via e-mail) which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CO\textsubscript{2}CC Program Annual Meeting.

The Carbon Dioxide Capture & Conversion (CO\textsubscript{2}CC) Program is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact John J. Murphy at John.J.Murphy@catalystgrp.com or +1.215.628.4447 (x1121).
CONTENTS

EXECUTIVE SUMMARY ... xix

1. INTRODUCTION .. 1
1.1 REPORT CONTRIBUTORS ... 2

2. CO₂ CONVERSION TO SYNGAS .. 5
2.1 INTRODUCTION .. 5
2.2 STATE OF THE ART OF SYNGAS PRODUCTION .. 6
2.2.1 Water Gas Shift Reaction (WGS) .. 6
2.2.2 Gasification .. 8
2.2.3 Partial Oxidation of Methane (POX) .. 11
2.2.4 Steam Methane Reforming (SMR) .. 12
2.2.5 Auto-thermal reforming process (ATR). ... 15
2.2.6 Outlook ... 16
2.3 CO₂ AS FEEDSTOCK FOR SYNGAS PRODUCTION .. 17
2.3.1 Dry Reforming of Methane (DRM) .. 17
2.3.2 DRM in the presence of steam (bi-reforming) .. 26
2.3.3 DRM in the presence of oxygen (oxy-reforming) ... 30
2.3.4 DRM in the presence of steam & oxygen (tri-reforming) ... 32
2.3.5 Outlook ... 37
2.4 CO₂ TO SYNGAS ENABLING TECHNOLOGIES ... 37
2.4.1 CALCOR® dry reforming technology ... 38
2.4.2 Shell-SARI dry reforming technology ... 39
2.4.3 Carnol technology ... 39
2.4.4 BASF two-stage dry reforming technology ... 39
2.4.5 Haldor Topsøe A/S bi-reforming technology .. 40
2.4.6 Chiyoda bi-reforming technology .. 41
2.4.7 KOGAS tri-reforming technology ... 41
2.4.8 Oberon Fuels process .. 42
2.4.9 Outlook ... 42
2.5 CO₂ TO SYNGAS VIA OTHER DEVELOPMENT ROUTES ... 42
2.5.1 Solar-based thermochemical technology ... 43
2.5.2 Non-thermal plasma technology ... 44
2.5.3 Electrochemical technology .. 47
2.5.4 Outlook .. 49

2.6 MARKETS AND OPPORTUNITIES ... 49
2.6.1 Markets ... 49
2.6.2 Opportunities ... 51

2.7 TECHNICAL/ECONOMIC HURDLES ... 52

2.8 CONCLUSIONS .. 53

2.9 REFERENCES ... 55

3. CO₂ CONVERSION TO METHANE ... 65

3.1 INTRODUCTION .. 65

3.2 STATE OF THE ART OF SYNTHETIC METHANE PRODUCTION 66
3.2.1 Feedstocks .. 66
3.2.2 Process Concepts .. 66
3.2.3 Benchmarking technologies ... 69
3.2.4 Catalysts ... 71

3.3 POWER TO GAS CONCEPT (PtG) ... 73
3.3.1 Process Scheme to Methane .. 73
3.3.2 Methane vs Syngas Production .. 75

3.4 ENABLING TECHNOLOGIES ... 75

3.5 OTHER DEVELOPMENT ROUTES ... 77
3.5.1 Photochemical Route .. 77
3.5.2 Electrochemical Route .. 77
3.5.3 Thermochemical Ammonia Route .. 78
3.5.4 Biological Methanation .. 78

3.6 MARKETS AND OPPORTUNITIES ... 79
3.7 TECHNICAL/ECONOMIC HURDLES ... 80

3.8 CONCLUSIONS ... 80

3.9 REFERENCES ... 81

4. INDEX .. 85
FIGURES

Figure 2.2.2.1 Global syngas output by feedstock... 9
Figure 2.2.2.2 The hydromethanation process developed by GreatPoint Energy............... 10
Figure 2.2.4.1 Reaction rate vs metal dispersion on ZrO₂, Al₂O₃ and MgAl₂O₄ support at 500°C with steam:CH₄ molar ratio of 4 (adapted from Jones et al., 2008).................. 14
Figure 2.2.5.1 Basics of (a) multi-purpose gasification and (b) autothermal reforming reactors (adapted from Lurgi, 2003)... 16
Figure 2.3.1.1 Number of publications (blue) and patents (red) published per year since 1995 ("CO₂ reforming" keyword in the publications/patents titles)......................... 17
Figure 2.3.1.2 Effect of temperature on the equilibrium composition for DRM (CH₄:CO₂ = 1:1, P = 0.1 MPa). Adapted from Nourielin et al., 2014......................... 19
Figure 2.3.2.1 CO₂ and CH₄ conversions in bi-reforming of methane (a) and natural gas (b) over 15 wt% Ni/MgO at 830°C and 0.7 MPa (adapted from Olah et al., 2015)... 29
Figure 2.3.3.1 Equilibrium carbon deposition as a function of temperature for dry reforming, oxy-reforming and by-reforming using HBC Chemistry (adapted from Kumar et al., 2016b)... 31
Figure 2.3.4.1 Carbon analysis on the catalysts by temperature-programmed oxidation after the tri-reforming reaction (adapted from Song & Pan, 2004)...................... 35
Figure 2.3.4.2 Effect of time-on-stream on CH₄, CO₂, and H₂O conversion (adapted from Singha et al., 2016)... 36
Figure 2.4.1.1 Schematic flow diagram for CALCOR® Standard process (© 2001 URBAN-VERLAG Hamburg/Wien GmbH).. 38
Figure 2.4.7.1 KOGAS tri-reformer reactor and KDN-1 catalyst (© 2017 Cho W, Yu H, Mo Y. Licensee InTech)... 41
Figure 2.5.1.1 Scheme of the two-step redox cycle for CO₂ and H₂O splitting to CO and H₂ ... 43
Figure 2.5.2.1 Scheme of SOEC and electrochemical reactions.. 48
Figure 2.5.2.2 (a) DBD reactor scheme with the catalyst, (b) CH₄ and CO₂ conversions obtained with plasma alone, catalyst alone and plasma-catalyst combination, and (c) H₂ and CO selectivity. Flowrate, 60 mL/min; flowrate of Ar, 30 mL/min; CH₄:CO₂ molar ratio = 1; discharge length, 10 cm; 60W; GHSV=1800 h⁻¹; 450°C. Catalyst alone: CH₄:CO₂:Ar = 0.25:0.25:0.5; GHSV=1800 h⁻¹; 450°C; 0.1 g. (adapted from Zhang et al., 2010).................. 46
Figure 2.5.3.1 Scheme of SOEC and electrochemical reactions.. 48
Figure 2.6.1.1 CO₂ emissions (%) from combustion-related activities by regions............. 50
Figure 3.2.2.1 Temperature influence on the equilibrium composition at 0.1 MPa of (a) CO methanation and water gas shift reaction, H2:CO = 3, and (b) CO2 methanation and water gas shift reaction, H2:CO2 = 4.67

Figure 3.2.4.1 Number of publications (English language) per year since 1995 with the keyword "CO methanation" or "CO2 methanation" in the publication's title (database: Web of Science). ...71

Figure 3.2.4.2 CO2 conversion with a feed of pure CO2 and biogas at 350°C.72

Figure 3.3.1 Discharge time vs storage capacity of flywheels, batteries, compressed air energy storage (CAES), pumped hydro storage (PHS), hydrogen (H2) and synthetic natural gas (SNG), adapted from Specht et al., 2009..................................73

Figure 3.4.1 Audi e-gas plant maquette. ...76

TABLES

Table 2.3.1 Ni-based DRM catalysts evaluated at time-on-stream >20 h, and 0.1 MPa pressure (unless otherwise stated)...............................25

Table 2.3.2 Optimized CH4:CO2:H2O feed molar ratio and corresponding parameters of syngas (adapted from Demidov et al., 2011).................................27

Table 2.3.3 Main reactions thermodynamically possible for tri-reforming (Song, 2004)..33

Table 2.4.1 Comparison of full size monotube pilot experiments (HOU) and industrial plants (referenced with country where they are constructed) of CO2-rich reforming of natural gas with different catalysts (adapted from Mortensen & Dybkjær, 2015) ...40

Table 3.2.1 Suppliers, concepts and technology names for commercial CO and CO2 methanation technologies (adapted from Rönsch et al, 2016)68

Table 3.2.2 Commercial CO methanation processes (adapted from Rönsch et al, 2016 & IEA, 2014)..70

SCHEMES

Scheme 2.3.1.1 Schematic reaction network of carbon formation (adapted from Trimm, 1997) and TEM image of encapsulated nickel catalyst into whisker (adapted from Abild-Pedersen, 2006). ..19

Scheme 2.3.1.2 Basics of Eley-Rideal and Langmuir-Hinshelwood mechanism in dry reforming...21

Scheme 2.3.1.4 Schematic representation of encapsulated particles by different coatings........23

Scheme 2.3.4.1 Reaction pathways for methane partial oxidation to syngas..................33

Scheme 3.3.1 Basic concept of interconnected power and gas grids network for different markets...74