CATALYTIC CONVERSION OF SYNGAS TO CHEMICAL PRODUCTS III

A technical investigation commissioned by the members of the Catalytic Advances Program

Client Private
September 2018
The Catalytic Advances Program (CAP)

The Catalytic Advances Program (CAP) is an information resource for research and development organizations in the petroleum, chemical, and polymer industries. By the direction of the member companies (through balloting and other interactive means), the program delivers a range of timely and insightful information and analyses which are accessible exclusively to members and protected by confidentiality agreements. The objective is to provide a technical update on commercially viable advances in catalysis as well as benchmark commercial advances in catalysis and process technology.

Members receive three in-depth CAP Technical Reports which are written and peer reviewed by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CAP Communications (delivered via e-mail) which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CAP Annual Meeting.

The Catalytic Advances Program (CAP) is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact John J. Murphy at John.J.Murphy@catalystgrp.com or +1.215.628.4447 (x1121).
CONTENTS

EXECUTIVE SUMMARY

1. INTRODUCTION
 1.1 AUTHORS & CONTRIBUTORS
 1.2 REFERENCES

2. DIRECT CONVERSION OF SYNGAS TO CHEMICALS
 2.1 INTRODUCTION, SCOPE AND LIMITS
 2.2 CATALYST AND TECHNOLOGY ADVANCES FOR OXYGENATES
 2.2.1 Methanol
 2.2.2 Ethanol and Higher Alcohols
 2.2.3 Dimethyl Ether (DME)
 2.2.4 Mono Ethylene Glycol (MEG)
 2.3 CONCLUSIONS, RECOMMENDATIONS & HURDLES
 2.4 REFERENCES

3. INDIRECT CONVERSION OF SYNGAS TO CHEMICALS
 3.1 INTRODUCTION
 3.2 CATALYST AND TECHNOLOGY ADVANCES FOR CARBONYLATION
 3.2.1 Acetic acid
 3.2.2 Acetic anhydride
3.3 CATALYST AND TECHNOLOGY ADVANCES FOR HYDROXYCARBONYLATION (HYDROCARBOXYLATION) ... 66
 3.3.1 Acrylic acid ... 66
 3.3.2 Propanoic acid ... 68
3.4 CATALYST AND TECHNOLOGY ADVANCES FOR ALKOXYCARBONYLATION ... 69
 3.4.1 Methyl methacrylate, MMA .. 70
 3.4.2 Adipic Acid ... 73
3.5 CATALYST AND TECHNOLOGY ADVANCES FOR OXIDATIVE CARBONYLATION ... 75
 3.5.1 Dimethylcarbonate, DMC .. 78
 3.5.1.1 Catalyst advances in direct MeOH oxycarbonylation route .. 80
 3.5.1.2 Catalysts advances in Methylnitrite carbonylation route .. 82
 3.5.1.3 Alternative approaches for DMC production ... 83
3.6 CATALYST AND TECHNOLOGY ADVANCES FOR HYDROFORMYLATION ... 84
 3.6.1 Commercialization status .. 85
 3.6.1.1 The Johnson Matthey (JM) Process ... 85
 3.6.1.2 LP Oxo	extsuperscript{SM} technology .. 86
 3.6.1.3 ExxonMobil .. 86
 3.6.1.4 Mitsubishi Chemical Corporation (MCC) .. 86
 3.6.1.5 Shell hydroformylation (SHF) .. 87
 3.6.1.6 Ruhrchemie/Rhone-Poulenc (RCH/RP) .. 87
 3.6.2 Catalyst advances ... 87
 3.6.2.1 Homogeneous hydroformylation catalysts ... 87
 3.6.2.2 Heterogeneous hydroformylation catalysts ... 90
 3.6.3 Process advances ... 91
3.7 CATALYST AND TECHNOLOGY ADVANCES FOR HYDROAMINO-METHYLATION ... 94
3.8 CONCLUSIONS, RECOMMENDATIONS & HURDLES ... 96
3.9 REFERENCES .. 97
4. CONVERSION OF SYNGAS TO CHEMICALS VIA FISCHER-TROPSCH SYNTHESIS ... 111
 4.1 INTRODUCTION ... 111
 4.1.1 Light olefins .. 111
4.1.2 Aromatics ... 112

4.2 CURRENT COMMERCIAL PROCESSES .. 114
 4.2.1 FT fuel production processes .. 114
 4.2.2 Olefin production processes .. 115
 4.2.3 Aromatics production processes ... 117

4.3 CATALYST ADVANCES ... 118
 4.3.1 Catalysts for olefins production .. 119
 4.3.1.1 Modified FT catalysts .. 119
 4.3.1.2 Bifunctional catalysts .. 122
 4.3.2 Catalysts for aromatics production .. 124

4.4 PROCESS ADVANCES .. 126
 4.4.1 Technology and processes for olefin production .. 126
 4.4.2 Technology and processes for aromatics production ... 129

4.5 CONCLUSIONS, RECOMMENDATIONS & HURDLES .. 132

4.6 REFERENCES ... 135

5. INDEX .. 139

FIGURES

Figure 1.1 Global syngas output by feedstock (GSTC, 2018)... 1
Figure 1.2 Syngas applications (Hands, 2017) .. 2
Figure 1.3 Syngas applications by market volume in 2004 (left) (van der Drift et al., 2004) and 2016 (right) (Hands, 2017) ... 3
Figure 2.1 Global methanol end uses in 2016 (Hands, 2017)... 7
Figure 2.2 Global methanol demand and projections by year and end use (Methanex, 2016) 8
Figure 2.3 Process flow diagram of the ICI Low Pressure Methanol synthesis process. reproduced from Palma et al. (2018) .. 10
Figure 2.4 Process flow diagram of the Haldor Topsoe Low Pressure Methanol synthesis process .. 11
Figure 2.5 Process flow diagram of the LPMEOH™ process (US DOE CCTDP, 2004) 13
Figure 2.6 Methanol synthesis reactors designed for efficient cooling (a-d), optionally with feed pre-heating (c-e), as well as for low pressure drop (f and g). (a) Cooling with water bath; (b) cooling with water coils; (c) cooling with cold feed; (d) feed gas quench; (e) feed-effluent heat exchange by periodic flow reversal; (f) lateral flow. Adapted from Lange (2001) .. 17
Figure 2.7 Modern synthesis loop – Johnson Matthey Combi Loop (Sheldon, 2017)..................19
Figure 2.8 LanzaTech’s Process Scale-up and Commercialization Plants (LanzaTech, 2018)....25
Figure 2.9 Process flow diagram for the gasification of switchgrass followed by syngas fermentation to ethanol. BFW: boiler feedwater system, STM: steam, CWS: circulating water system. Adapted from Phillips et al. (2017) ..29
Figure 2.10 Monoethylene glycol demand by application (Penney, 2017).................................33
Figure 2.11 Process flow diagram for the Mitsubishi/Shell OMEGA process for MEG production. Adapted from Kawabe (2010)...34
Figure 2.12 Process flow diagram of the coal to MEG process via DMO (Jivral, 2012)..............36
Figure 2.13 Main operation units of the Eastman/JM Davy’s MEG process (Penney, 2017).......36
Figure 3.1 Global Acetic Acid Uses (essentialchemicalindustry.org, 2016)...............................48
Figure 3.2 Consumption of Acetic acid 2016 (IHSmarkit.com, 2016)..49
Figure 3.3 Process flow diagram for Rh catalyzed methanol carbonylation............................60
Figure 3.4 Simplified flow diagram of the Cativa Process (catalysis-ed.org.uk, 2018)..............61
Figure 3.5 Simplified flow diagram of CT Acetica process (Chiyoda Corp. 2018)...............63
Figure 3.6 Block diagram of the BP SaaBre process ...64
Figure 3.7 Schematic diagram of LiMA process (Krill, 2017)..72
Figure 3.8 Global dimethyl carbonate market share by application78
Figure 3.9 Block flow diagram of the Versalis/Lummus Technology.......................................79
Figure 3.10 Simplified block diagram for the formation of 2-ethylhexanol and butanols via propylene hydroformylation (JMprotech.com, 2018)..86
Figure 4.1 Light olefins share in global demand for petrochemicals in 2013 (Kerkhof, 2014) ..111
Figure 4.2 Major products derived from BTX (US DOE EERE, 2000).....................................113
Figure 4.3 Simplified schematic diagram of UOP's MTP/OCP process....................................116
Figure 4.4 Simplified schematic diagram of the DMTO-II process...117
Figure 4.5 Catalytic process of OX-ZEO. (A) CO conversion and product distribution at different H2/CO ratios in syngas over a catalyst with mass ratio of ZnCrOx/MSAPO = 1.4 at a space velocity of 4800 ml/h·gcat. (B) Hydrocarbon distribution in OX-ZEO in comparison to that reported for FTTO and that in FTS predicted by the ASF model at a chain growth probability of 0.46, with the yellow bar representing selectivity of C2−C4 hydrocarbons. (C) A stability test of a composite catalyst with ZnCrOx/MSAPO ratio = 0.9 at 6828 ml/h·gcat and H2/CO of 2.5.............................123
Figure 4.6 Proposed reaction mechanism of the OX-ZEO process..123
Figure 4.7 Effect of integration manner on catalytic behaviors of the composite catalysts containing Zr–Zn (Zr/Zn=2:1) oxide and SAPO-34 (24 h). a) Dual-bed configuration. b) Stacking of granules with sizes of 250–600 mm. c) Simple mixing of the two components in an agate mortar. d) Ball-milling of two components together for 24 h. o/p ratio denotes the C2–C4 olefin/paraffin ratio ..124
Figure 4.8 The effect of the intimacy of ZnCrO$_x$ and ZSM-5-533 (containing 75% ZnCrO$_x$) on the overall catalytic performance ... 125

Figure 4.9 The typical product distribution based on the Anderson-Schulz-Flory (ASF) model .. 127

Figure 4.10 Commercial reactor types for FT processes (Abbaslou, et al., 2010) 128

Figure 4.11 Illustration of two-stage fluidized bed (TSFB) reactor configuration 130

Figure 4.12 Product profiles samples at different stages of the TSFB reactor (0.3 h$^{-1}$, 0.4 MPa) .. 130

Figure 4.13 Simplified process flow diagram of the FMTA pilot plant (1. catalyst regenerator; 2. LHTA reactor; 3. MTA reactor; 4. Stripper; 5. Fine powder filter; 6. Condenser; 7. Gas–liquid–solid three-phase separator; 8. Compressor; 9. Gas separation unit; and 10. Liquid separation unit) ... 131

TABLES

Table 1.1 Market size and Average Annual Growth Rate (AAGR) of the different syngas applications ... 3
Table 2.1 Composition of Cu/ZnO/Al$_2$O$_3$ catalysts from different manufacturers 14
Table 2.2 Improvements in feed and fuel consumption in methanol synthesis plants 19
Table 2.3 Key information on older technologies for thermochemical HAS synthesis 21
Table 2.4 Top 10 promoted and supported modified MS catalysts 26
Table 3.1 Acetic acid capacity in USA (ICIS, 2017) ... 49
Table 3.2 Commercialized liquid-phase process for acetic acid synthesis 59
Table 3.3 Relative activity of various metals in hydroformylation 88
Table 4.1 Catalytic performance of different iron catalysts in FTO reaction 120
Table 4.2 Catalytic performance of non Fe-based catalysts in FTO reaction 121
Table 4.3 Catalytic performance of CoMn catalysts at different H$_2$/CO ratios and reaction pressure for the FTO reaction ... 122

SCHEMES

Scheme 3.1 Catalytic Cycle of methanol carbonylation using Rh catalyst (Makaryan et al., 2015) ... 52
Scheme 3.2 Catalytic Cycle of methanol carbonylation using Ir catalyst (Jones, 2000) 53
Scheme 3.3 Cobalt catalyzed carbonylation reaction cycle (Budiman, 2016) 54
Scheme 3.4 Nickel catalyzed carbonylation reaction cycle (Peng et al., 2018) 55
Scheme 3.5 Reaction pathways for MMA formation using palladium catalyst (Makaryan et al., 2015) ... 71

Scheme 3.6 The principle of oxidative carbonylation. M (X) = reducible metal catalyst; [SH₂] = organic substrate; [OX] = oxidant; [S(CO)] = carbonylated product; [OXH₂] = reduced oxidant. Adapted from Gabriele et al. (2012) 76

Scheme 3.7 Catalytic cycle of alkenes hydroformylation using Rh-based catalysts 88