STATE OF THE ART AND FUTURE PROSPECTS FOR ELECTROCHEMICAL CO$_2$ CONVERSION ROUTES

A techno-economic investigation commissioned by the members of the Carbon Dioxide Capture & Conversion (CO$_2$:CC) Program

Client Private
November 2018
The Carbon Dioxide Capture & Conversion (CO₂CC) Program

The CO₂CC Program is a membership-directed consortium whose members are involved in the development, monitoring and utilization of the “state-of-the-art” in technological progress and commercial implementation of carbon dioxide capture/clean-up and conversion. By the direction of the member companies (through balloting and other interactive means), the program delivers a range of timely and insightful information and analyses which are accessible exclusively to members and protected by confidentiality agreements. The objective is to document technically and commercially viable options for CO₂ capture/clean-up as well as its conversion into useful products which meaningfully address the challenges posed by CO₂ life-cycle and overall sustainability issues.

Members receive three in-depth CO₂CC Techno-economic Reports which are written by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CO₂CC Communiqués (delivered via e-mail) which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CO₂CC Program Annual Meeting.

The Carbon Dioxide Capture & Conversion (CO₂CC) Program is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact John J. Murphy at John.J.Murphy@catalystgrp.com or +1.215.628.4447 (x1121).
CONTENTS

EXECUTIVE SUMMARY ... xxi

1. **INTRODUCTION** .. 1
 1.1 **BACKGROUND AND MOTIVATION** .. 1
 1.2 **AUTHORS AND CONTRIBUTORS** .. 3
 1.3 **REFERENCES** ... 4

2. **FUNDAMENTALS AND METHODOLOGY OF ELECTROCATALYTIC CO₂ REDUCTION (ECR)** ... 7
 2.1 **GENERAL REACTION PATHWAYS AND CONCEPTUAL APPROACHES** 7
 2.1.1 The Electrochemical Experiment ... 7
 2.1.2 Electrocatalysts and Reaction Pathways .. 9
 2.1.3 Catalyst Benchmarking .. 10
 2.2 **HOMOGENEOUS ELECTROCATALYSTS** .. 11
 2.3 **HETEROGENEOUS ELECTROCATALYSTS** ... 15
 2.3.1 Single Metal Catalysts .. 17
 2.4 **PAIRED REACTIONS** .. 19
 2.5 **CONCLUSIONS** .. 21
 2.6 **REFERENCES** ... 21

3. **SCOPE AND POTENTIAL TARGET PRODUCTS** ... 23
 3.1 **CARBON MONOXIDE/SYNGAS** ... 23
 3.2 **CARBOXYLIC ACIDS** ... 34
 3.2.1 Formic Acid .. 34
 3.2.2 Acetic Acid ... 43
 3.2.3 Oxalic Acid ... 44
 3.2.4 Higher Carboxylic Acids .. 46
 3.3 **FORMALDEHYDE** .. 46
 3.4 **ALCOHOLS** .. 47
 3.4.1 Methanol ... 47
 3.4.2 Ethanol .. 51
 3.4.3 Higher alcohols ... 53
 3.5 **HYDROCARBONS** .. 58
 3.5.1 Methane .. 58
3.5.2 Ethylene .. 59
3.6 MISCELLANEOUS .. 60
3.7 CONCLUSION ... 61
3.8 REFERENCES ... 63

4. TECHNO-ECONOMIC EVALUATION OF ECR TECHNOLOGIES 71
4.1 TECHNOLOGY READINESS LEVEL (TRL) AND CRITERIA APPLIED 72
4.2 EVALUATION OF THE TRL OF THE DIFFERENT ECO₂RR PRODUCTS 73
4.3 CONCLUSIONS .. 77
4.4 REFERENCES ... 78

5. CONCLUSIONS AND PERSPECTIVES ... 79
5.1 REFERENCES ... 80

6. INDEX ... 81

FIGURES

Figure 1.1 Qualitative molecular orbital diagram of CO₂ ... 2
Figure 2.1 Main research on new electroactive materials for electrocatalytic reduction of CO₂ .. 16
Figure 3.1 Physical characterization of NCNTs. (a) SEM images of NCNTs at low magnification. (b) EELS element mapping of N and C. (c) Statistical nitrogen atomic content and relative percentage. (d) Scheme of the graphitic, pyrolic, and pyridinic nitrogen configuration ... 24
Figure 3.2 The Pd(CNCₚ₋₋₋₋ₚ₋₋_-24
Figure 3.3 Activity of different metal chalcogenides for photocatalytic reduction of CO₂ to HCOOH. Conditions: catalyst, 25 mg; irradiation (λ = 420-780 nm, 0.3 W\cdot cm⁻²); MeCN, 20 mL; TEOA, 1 g; time, 10 h; illuminated area, 5 cm²; CO₂ pressure, 3 MPa; temperature, 25 °C ... 35
Figure 3.4 Typical SEM images of Sn/CNT-Agl (a and b). Nitrogen adsorption–desorption isotherms of Sn/CNT and Sn/CNT-Agl (c) and the corresponding BJH pore size distribution curve of Sn/CNT-Agl (d) .. 36
Figure 3.5 TEM images of (a) 7 nm Cu NPs, (b) 7/0.8 nm Cu/SnO₂ NPs and (c) 7/1.8 nm Cu/SnO₂ NPs. (d) HR-TEM image of a representative 7/0.8 nm Cu/SnO₂ NP. (e) EELS elemental mapping of Cu and Sn of a 7/0.8 nm Cu/SnO₂ NP. (f) EELS line scan across a 7/0.8 nm Cu/SnO₂ NP 36
Figure 3.6 (a) Linear sweep voltammetry scans in the presence of the C-Cu/SnO₂₋₋科创
Figure 3.7 SEM images of BDD electrodes with a boron content of (a) 0.01%, (b) 0.1%, (c) 0.5%, (d) 1%, and (e) 2% at the same magnification 38
Figure 3.8 Faradaic efficiencies for the production of formic acid (red), hydrogen (green), and carbon monoxide (blue) by the eCO$_2$RR at BDD electrodes with various boron contents at -2 mA cm$^{-2}$ for 1 h. The error bars show the standard deviation obtained by repeating experiments three times 38

Figure 3.9 Manganese electrocatalyst for CO$_2$ reduction to HCOO$^-$/HCOOH 39

Figure 3.10 Reduced forms of [Ru(tpy)(pbn)(CO)]$^{2+}$.. 41

Figure 3.11 Ni-CCC pincer complex .. 43

Figure 3.12 (A) Predicted limiting potential (U_L, Volcano) for the elementary steps in eCO$_2$RR that involve the intermediate binding through carbon. (B) Predicted Gibbs free energy changes in the selectivity-determining step (CH$_4$ vs. CH$_3$OH production) as a function of OH binding energy at zero electrode potential. The CH$_3$OH production is preferred at weaker (less negative) OH binding energies. Out of total 27 stable NSAs calculated in this study, those NSAs that are located close to the top of CO-analogous volcano (i.e., between Cu and Au) are marked in blue, while other NSAs and pure metals are marked in black (also calculated in this study). We note that this volcano is usually semiquantitative in guiding the design of new catalysts, given a scatter in scaling relations 48

Figure 3.13 CO and H binding energies for the lowest energy configurations of NSAs (black dots), potentially promising NSAs (blue dots) with low expected overpotentials (those that are between Cu and Au), and pure metals (hollow black dots). The values in parentheses are the OH binding energies The vertical dashed line indicates the optimal CO binding energy: i.e., the top of the volcano in Figure 2A. On the right, the volcano relation of the limiting potential (UL, Volcano, x axis) for the hydrogen evolution reaction is shown as a function of H binding energies (y axis). The arrows indicate a desired direction for catalyst design with higher activity for CO$_2$ reduction reaction as well as low HER. Hollow circles (calculated in this study) and black triangles indicate the calculated overpotential for the HER reaction .. 49

Figure 3.14 a) SEM images of CuAu sample deposited on nanoporous Cu film. b) Faradaic efficiency of methanol and ethanol on different electrodes c),d) Free energy diagram for the c) eCO$_2$RR to CH$_4$ or CH$_3$OH (shown in red) and d) H$_2$ evolution reactions at zero electrode potential for Cu (black) and W/Au (blue). 50

Figure 3.15 Electrocatalytic activity of carbon nanostructures towards CO$_2$ reduction. (a) FEs of CO, CH$_4$, C$_2$H$_4$, HCOO$^-$, C$_2$H$_5$OH, CH$_3$COO$^-$, and C$_3$H$_7$OH at various applied cathodic potentials for NGQDs. (b) FEs of CO$_2$ reduction products for pristine GQDs. (c) Selectivity for NRGOs. (d) Tafel plots of partial current density versus applied cathodic potential for three nanostructured carbon catalysts. The error bar represents the s.d. of three separate measurements for an electrode .. 52

Figure 3.16 Electrochemical CO$_2$ reduction activity of transformed densely packed Cu nanoparticle ensembles (trans-CuEn). (A) FE of C$_1$, C$_2$, and C$_3$ products at various potentials for trans-CuEn. (B) FE of major products at various potentials for trans-CuEn. Electrochemical tests were conducted using 0.1 M KHCO$_3$ solution at 1 atm CO$_2$. Error bars shown are 1 SD from three independent measurements .. 53
Figure 3.17 Bar graph reporting the Faradaic efficiencies for each product on the different cube-shaped copper nanocrystals and on a Cu foil at -1.1 V_{RHE} in 0.1 M potassium bicarbonate electrolyte solution .. 54

Figure 3.18 Faradaic efficiency for C_2H_4, C_2H_6, CO, HCOOH, ethanol, n-propanol, and H_2 on Cu nanowire arrays with different lengths at -1.1 V_{RHE} in CO_2-saturated 0.1 M aqueous KHCO_3 electrolytes (0 mm nanowire represents Cu foil) 55

Figure 3.19 Reaction pathways for C_1 and C_2 products in eCO_2RR on modified Cu mesh supports .. 57

Figure 3.20 Faradaic efficiencies for the production of C_1, C_2, and C_3 products by copper nanoparticles .. 57

Figure 3.21 a–c) Current densities and d–f) corresponding product distributions of various nanostructured electrodes and polycrystalline copper. .. 60

Figure 4.1 Schematic representation of different pathways for eCO_2RR to liquid products. The pathways are CO_2 electroreduction to (1) CO and subsequent Fischer-Tropsch conversion of syngas to diesel fuel (CO_2-CO-FTL), (2) ethanol in one step (CO_2-C_2H_5OH), (3) CO and subsequent reduction to ethanol in two steps (CO_2-CO-C_2H_5OH), and (4) formic acid (CO_2-HCOOH). .. 72

Figure 4.2 Number of literature reports per year with the term “electrochemical reduction of CO_2”, showcasing the exponential rise of interest in the related research field over the past 18 years... 73

Figure 4.3 Total costs (combined CAPEX and OPEX) per tonne of product generated against market price per tonne of product ... 74

Figure 4.4 Faradaic efficiency vs. total current density for (a) C_1 and (c) C_2-C_3 products and energetic efficiency vs. total current density for (b) C_1 and (d) C_2-C_3 products ... 75

Figure 4.5 Technology Readiness Level (TRL) ranges of the considered CO_2 utilization technologies .. 76

TABLES

Table 3.1 Mn based catalysts for electrochemical reduction of CO_2 to CO and their maximum Faradaic efficiencies ... 25

Table 3.2 Fe based catalysts for electrochemical reduction of CO_2 to CO and their maximum Faradaic efficiencies ... 27

Table 3.3 Co based catalysts for electrochemical reduction of CO_2 to CO and their maximum Faradaic efficiencies .. 29

Table 3.4 Ni based catalysts for electrochemical reduction of CO_2 to CO and their maximum Faradaic efficiencies ... 30

Table 3.5 Ru based catalysts for electrochemical reduction of CO_2 to CO and their maximum Faradaic efficiencies ... 31

Table 3.6 Re based catalysts for electrochemical reduction of CO_2 to CO and their maximum Faradaic efficiencies ... 33
Table 3.7 Ir based catalysts for electrochemical reduction of CO₂ to CO and their maximum Faradaic efficiencies .. 34
Table 3.8 Group 8 transition metal based catalysts for electrochemical reduction of CO₂ to HCOO⁻/HCOOH and their maximum Faradaic efficiencies 40
Table 3.9 Group 9 transition metal based catalysts for electrochemical reduction of CO₂ to HCOO⁻/HCOOH and their maximum Faradaic efficiencies 41
Table 3.10 Possible reactions in electrocatalytic CO₂ reduction and associated potentials vs. SHE ... 47
Table 3.11 FE for the formation of ethanol and n-propanol by electrochemical CO₂ reduction on transition metal modified Cu-based electrodes 55
Table 3.12 Standard potentials of possible reactions in electrochemical CO₂ reduction reaction .. 61
Table 4.1 Different TRL levels, as a system to evaluate available technologies 72
Table 4.2 Current and estimated costs of production by CO₂-electrolysis for H₂, CH₄, C₂H₄, HCOO⁻ and CH₃OH. Table reproduced from Durst et al. [146] 75

SCHEMES

Scheme 2.1 Experimental setup for electrochemical studies during CO₂ and N₂ purging in a standard three-electrode arrangement in H-Cell with gas inlet and outlet. Nanofibrous Co₃O₄ acts as a WE, Pt as a CE and Ag/AgCl as RE in a 0.1 M TBAPF₆ in acetonitrile with 1.0 vol% H₂O .. 7
Scheme 2.2 Reference electrode potentials vs. NHE. Ag/AgCl electrode potential value is given for a 3 M KCl solution .. 8
Scheme 2.3 Schematic presentation of potentials and overpotentials of important steps in electrochemical CO₂ reduction .. 8
Scheme 2.4 General electrochemical CO₂ reduction mechanism by a homogeneous (top) and heterogeneous (bottom) ... 9
Scheme 2.5 Inner and outer-sphere mechanism in electrochemical homogeneously catalyzed CO₂ reduction .. 12
Scheme 2.6 Metal-CO₂ binding modes occurring with one metal center 13
Scheme 2.7 Non-acid assisted pathways for the reduction of CO₂ ... 14
Scheme 2.8 Catalytic cycle for Brønsted assisted reduction of CO₂ 14
Scheme 2.9 Possible mechanisms for the different metal groups towards formation of C₁/C₂ products .. 17
Scheme 2.10 ECO₂:RR to CO and OER by Meyer et al. catalyzed by the same Ru complex catalyst ... 20
Scheme 2.11 Paired cathodic CO₂ to CO electroconversion catalyzed by a Re-bpy complex and anodic synthesis of benzimidazole mediated by ceric ammonium nitrate 20
Scheme 3.1 Proposed mechanism for CO$_2$ reduction over PEI-functionalized N-doped carbon nanomaterials

Scheme 3.2 Proposed catalytic cycle with IrI generated in situ from CO$_2$ and a two-electron reduction

Scheme 3.3 Mechanistic pathways for the electrocatalytic production of formic acid, acetic acid and methanol (red dots = electrocatalytically active sites)

Scheme 3.4 Reaction pathways for the electrochemical reduction of CO$_2$ in the (A) absence and (B, C) presence of EMImTf$_2$N at a Pb Electrode in MeCN

Scheme 3.5 Reaction pathway for the pyridinium catalyzed production of methanol

Scheme 3.6 Proposed reaction paths for electrocatalytic reduction of CO$_2$ on Cu nanowire arrays (orange dots = electrochemically active Cu sites)

Scheme 3.7 Possible electrochemical cells for combined electrolysis and methanogenesis of CO$_2$ to methane