THE CATALYST GROUP RESOURCESTM

CO₂ UTILIZATION: BEYOND EOR

A techno-economic investigation commissioned by the members of the Carbon Dioxide Capture & Conversion (CO₂CC) Program

Client Private September 2018

The Carbon Dioxide Capture & Conversion (CO2CC) Program

The CO₂CC Program is a membership-directed consortium whose members are involved in the development, monitoring and utilization of the "state-of-the-art" in technological progress and commercial implementation of carbon dioxide capture/clean-up and conversion. By the direction of the member companies (through balloting and other interactive means), the program delivers a range of timely and insightful information and analyses which are accessible exclusively to members and protected by confidentiality agreements. The objective is to document technically and commercially viable options for CO₂ capture/clean-up as well as its conversion into useful products which meaningfully address the challenges posed by CO₂ life-cycle and overall sustainability issues.

Members receive three in-depth CO_2CC Techno-economic Reports which are written by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CO_2CC Communiqués (delivered via e-mail) which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CO_2CC Program Annual Meeting.

The **Carbon Dioxide Capture & Conversion (CO₂CC) Program** is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact John J. Murphy at <u>John.J.Murphy@catalystgrp.com</u> or +1.215.628.4447 (x1121).

P.O. Box 680 Spring House, PA 19477 U.S.A ph: +1.215.628.4447

CONTENTS

E	EXECUTIVE SUMMARYxxvii		
1.	INTR	ODUCTION	1
	1.1 EN	HANCED OIL RECOVERY	1
	1.2 EN	HANCED GAS RECOVERY	2
	1.3 EN	HANCED COALBED METHANE RECOVERY	3
	1.4 AU	THORS AND CONTRIBUTORS	3
	1.5 REI	FERENCES	5
2.	CO ₂ E	NHANCED OIL RECOVERY	7
	2.1 INT	RODUCTION	7
	2.2 IMI	PROVED OIL RECOVERY	9
	2.2.1	Waterflooding	9
	2.2.2	History and Overview of Waterflooding	9
	2.2.3	Evaluation of Waterflooding Performance	10
	2.2.4	Economic Analysis of Waterflooding	11
	2.3 EN	HANCED OIL RECOVERY (EOR)	11
	2.3.1	Introduction to EOR	12
	2.3.2	Overview of EOR Processes	12
	2.4 CO	2-EOR	17
	2.4.1	Technical Aspects of CO ₂ -EOR.	19
	2.4.2	Reservoir Characterization	22
	2.4.3	Operational Aspects of CO ₂ -EOR.	24
	2.5 EC	ONOMIC ANALYSIS OF CO ₂ -EOR PROCESSES	26
	2.5.1	Original Oil in Place in the World	27
	2.5.2	Original Oil in Place in the U.S.	27
	2.5.3	Operational Costs of Oil Reservoirs	28
	2.5.4	Operational Costs of CO ₂ -EOR	28
	2.5.5	Future Outlook of CO ₂ -EOR.	29
		SE STUDY: CARBON DIOXIDE ENHANCED OIL RECOVERY AND E PETRA NOVA POWER PLANT	30
	2.6.1	Economics of EOR	30
	2.62	CO ₂ for EOR from Power Plants: The case of Petra Nova	31

	2.7		OUSTRY PERSPECTIVE ON CARBON DIOXIDE ENHANCED OIL	. 32
	2.	.7.1	Dr. Richard Esposito, Program Manager of Geosciences, Carbon Capture and Utilization, Southern Company	. 32
	2.	7.2	Michael E. Moore, Managing Partner, EWSA (East-West Strategic Advisors)	34
	2.	.7.3	George Koperna, Vice President, Advanced Resources International	35
	2.8	REF	FERENCES	37
3.	CO	EN	HANCED GAS RECOVERY	41
	3.1	INT	RODUCTION	41
	3.2	INT	RODUCTION TO RESERVOIR ENGINEERING	41
	3.	.2.1	Hydrocarbon Reserves and Resources	41
	3.	.2.2	Reservoir Rock Properties.	42
	3.3	DIF	FERENT TYPES OF RESERVOIR FLUIDS	43
	3.	3.1	Black Oil	44
	3.	.3.2	Volatile Oil	45
	3.	.3.3	Retrograde Gas	45
	3.	3.4	Wet Gas	46
	3.	.3.5	Dry Gas	46
	3.4	PRO	OPERTIES OF DRY GAS	46
	3.5	PRO	OPERTIES OF WET GAS	48
	3.6	PRO	OPERTIES OF GAS CONDENSATES	48
	3.7	GAS	S RESERVOIR ENGINEERING	49
	3.	7.1	Properties of Natural Gas	49
	3.	7.2	Properties of CO ₂	51
	3.	7.3	General Material Balance Equation for Gas Reservoir	55
	3.	7.4	Methods for Calculation of Reserve-In-Place	56
	3.	.7.5	Prediction of the Performance of Gas Reservoirs	58
	3.8	IMF	PROVED GAS RECOVERY	58
	3.	8.1	Primary Recovery from Gas Reservoirs	58
	3.	.8.2	Waterflooding for Gas Reservoirs	59
	3.	.8.3	CO ₂ -Flood for Enhanced Gas Recovery	59
	3.9	ECO	DNOMIC ANALYSIS OF CO ₂ ENHANCED GAS RECOVERY	60
	3.	9.1	Evaluation of the Natural Gas Reserves	60

3.9.2 Recoverable Volume of Natural Gas	62
3.9.3 Operational Costs of Gas Reservoir Development	64
3.10 CASE STUDY: ENHANCED GAS RECOVERY AND EXAMPLES	65
3.10.1 Case Studies	65
3.10.2 Future Developments	66
3.11 INDUSTRY PERSPECTIVE ON ENHANCED GAS RECOVERY	67
3.11.1 Dr. John Mansoori, Senior Reservoir Engineering Advisor, Encana	67
3.11.2 Michael E. Moore, Managing Partner, EWSA (East-West Strategic Advisors)	67
3.11.3 George Koperna, Vice President, Advanced Resources International	68
3.12 REFERENCES	68
4. CO ₂ FOR ENHANCED COALBED METHANE RECOVERY	71
4.1 INTRODUCTION	71
4.2 CURRENT AND FUTURE MARKET OF NATURAL GAS	71
4.3 CLEAN ENERGY STATUS AND TRENDS	73
4.4 CONVENTIONAL NATURAL GAS RESOURCES	74
4.5 UNCONVENTIONAL NATURAL GAS RESOURCES	75
4.5.1 Coalbed Methane (CBM) Resources	79
4.6 MAJOR CBM PLAYS IN THE U.S	84
4.7 SORPTION OF CO ₂ AND METHANE FOR ENHANCED CBM RECOVED AND CO ₂ SEQUESTRATION	
4.7.1 Principles of Adsorption	85
4.7.2 Methane Retention by Coal Seams	87
4.7.3 Evaluation of Methane Content in the Coal Seams	88
4.7.4 CO ₂ Retention by Coal Seams	88
4.8 CBM RESERVOIR ANALYSIS AND MANAGEMENT	89
4.9 ENVIRONMENTAL CHALLENGES OF CO ₂ -CBM RECOVERY	94
4.9.1 Water Production and Disposal in CBMs	94
4.9.2 Chemicals Associated with CBM Water	94
4.10 ECONOMIC EVALUATION OF CO ₂ -CBM RECOVERY	96
4.10.1 Resource Evaluation	96
4.10.2 Capital and Operating Costs	96
4.10.3 Tax Credits	97

4.10.4	Limits of Profitability	97
4.10.5	Future Outlook of CO ₂ CBM Recovery	97
	ASE STUDY: ENHANCED COAL BED METHANE RECOVERY AND THE LBERTA PILOT PROJECT	
4.11.1	Alberta Pilot Project	98
4.11.2	Economics	99
4.11.3	Site Requirements	99
4.11.4	Future Developments	. 100
4.12 I	NDUSTRY PERSPECTIVE ON ENHANCED CBM RECOVERY	. 100
4.12.1	Dr. John Mansoori, Senior Reservoir Engineering Advisor, Encana	. 100
4.12.2	Michael E. Moore, Managing Partner, EWSA (East-West Strategic Advisors)	. 101
4.12.3	George Koperna, Vice President, Advanced Resources International	. 102
4.13 F	REFERENCES	. 103
5. INDE	X	. 111
T. 0.1	FIGURES	
· ·	Phase diagram of CO ₂	
Figure 3.2	Phase diagram of CO ₂ Density of CO ₂ as a function of pressure and temperature	53
Figure 3.2 Figure 3.3	Phase diagram of CO_2 Density of CO_2 as a function of pressure and temperature Compressibility factor of CO_2 as a function of pressure and temperature	53 53
Figure 3.2 Figure 3.3 Figure 3.4	Phase diagram of CO_2 Density of CO_2 as a function of pressure and temperature Compressibility factor of CO_2 as a function of pressure and temperature Viscosity of CO_2 as a function of pressure and temperature	53 53
Figure 3.2 Figure 3.3 Figure 3.4	Phase diagram of CO_2 Density of CO_2 as a function of pressure and temperature Compressibility factor of CO_2 as a function of pressure and temperature	53 53 54
Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5	Phase diagram of CO_2 Density of CO_2 as a function of pressure and temperature Compressibility factor of CO_2 as a function of pressure and temperature Viscosity of CO_2 as a function of pressure and temperature Solubility of CO_2 in water as a function of pressure, temperature, and water	53 53 54
Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6	Phase diagram of CO ₂ Density of CO ₂ as a function of pressure and temperature Compressibility factor of CO ₂ as a function of pressure and temperature Viscosity of CO ₂ as a function of pressure and temperature Solubility of CO ₂ in water as a function of pressure, temperature, and water salinity	53 53 54 54
Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6 Figure 4.1	Phase diagram of CO ₂	53 54 54 61
Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6 Figure 4.1	Phase diagram of CO ₂	53 54 54 61 72 73
Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6 Figure 4.1 Figure 4.2 Figure 4.3	Phase diagram of CO ₂	53 54 54 61 72 73

Figure 4.6	Historical annual production rate of natural gas in the U.S. (Energy Information Administration, 2018)	. 77
Figure 4.7	Effect of coal rank on storage capacity (Ahmed & Meehan, 2012)	. 83
Figure 4.8	Five categories of adsorption isotherms as defined by Brunauer (Brunauer et al., 1938)	. 86
Figure 4.9	Langmuir isotherms for CH ₄ , CO ₂ , and N ₂ (Sinayuc et al., 2011)	. 89
	TABLES	
Table 2.1	Typical primary recovery factor from oil reservoirs based on the recovery drive mechanism (AAPG, 2016; Satter et al., 2008)	
Table 2.2	Ultimate recovery factor from oil reservoirs after each phase of production (Bui, 2010)	. 12
Table 2.3	CO ₂ volumes injected for EOR projects in the U.S. (adapted from Kuuskraa et al., 2011)	. 18
Table 2.4	Screening criteria for various EOR methods [adapted from (J. J. Taber, F. Martin, & R. Seright, 1997)]	. 23
Table 2.5	Average cost for producing one barrel of oil	. 29
Table 2.6	Cost comparison for EOR in three different reservoirs (Advanced Resources International, 2011)	. 32
Table 4.1	Properties of the main shale gas plays in the U.S. (Islam, 2015)	. 78
Table 4.2	Coal rank by ASTM (Rogers et al., 2007; Standard, 2012)	. 83
Table 4.3	Global CBM resource distribution adapted from (Godec et al., 2014)	. 84
Table 4.4	Properties of the main CBM plays in the United States (Rogers et al., 2007)	. 85
Table 4.5	Comparison between conventional and CBM reservoirs (Rogers et al., 2007)	. 90
Table 4.6	Average chemical content of the coalbed waters in the United States, mg/L (OJEIFO et al.)	. 95