Plastics Recycling and the Circular Economy: Catalytic and Compatibilization Solutions

Updated Multi-Client Study Proposal

January 2020
Plastics Recycling and the Circular Economy: Catalytic and Compatibilization Solutions

This TCGR multi-client study was launched in December 2019 and is slated for completion in April/May 2020. The study’s scope, and specific contents (as depicted in the TocC on page 8 of this revised/expanded proposal), reflect the inputs from a group of “charter” subscribers who indicated their priorities for coverage, areas to be expanded/deepened and focal points for emphasis in opportunity identification. These are leading industrial developers, suppliers, and end-users of technologies and plastics resins addressing recycling and the circular economy.

I. ABSTRACT

There is an intense R&D effort being undertaken by plastics producers, industry consortia and academia globally to understand and appreciate the hurdles to be overcome and to economically resolve a serious improvement in the recyclability of plastics, which has taken a center stage in a global debate (Circular Economy Action Plan, 2018). It is hoped that this will transform the way plastic products are designed, used, produced and recycled in the EU and other industrial countries. China, the U.S. and Western Europe and other regions are pressing for sustainable solutions to plastic recycling and a drastic reduction of plastic waste to the marine environment (Azocleantech, 2017). This proposed study is to assist the plastics and polyolefin industries to identify new pipeline technologies and strategic commercial directions which will help speed up their resolutions to these challenges in an economical way. It will address current state-of-art (SoA) in technology and commercial development, identify and address progress towards viability in two (2) promising approaches — notably catalytic and compatibilization and provide strategic guidance on the competitive landscape and future investment. It is a “must have,” industrially-sourced assessment for addressing the current industry need from resin producers, process licensors and catalyst/compatibilizer suppliers from a practical perspective.

II. BACKGROUND

All open literature and related studies to date do an adequate job of defining “the challenge” from both a market statistical basis, as well as defining the current plastics industry recycling status, i.e. the state-of-art (SoA) in recycling technologies. What is clearly missing is a visionary industrial oriented Technology Roadmap for the next 5-10 years that will concentrate R&D and commercial development efforts to speed up deployment, improving both efficiency and effectiveness of implementation, particularly in mixed plastics waste.

The missing factors to be addressed more fully are:

- What new pipeline technologies for different segments, e.g. PET, polyolefins, mixed plastics, etc., are likely to be the best directions for producers and industry to pursue economically?
- What do plastic producers currently think about this challenge, and what are their plans to address the issue? Without their support and input, the process will undoubtably be slower.
- What likely country, regional and global regulations will impact each company’s decision making?
No one disputes this is a decade long challenge! The issues to be resolved go beyond technical to include economic ones, based on the commercial understanding that currently the collection, separation of physical plastics streams, and the conversion back to monomers or recyclable technologies as they stand to date, are not yet ready for “prime time.” In this proposed multiclient study, TCGR will take a lead in providing viable technological directions from both pipeline R&D and commercial strategy perspectives.

Our leading networks from within the plastics industries, as well as from our Dialog Group®, industrially and from academia, provide us with unique resources to interface on a global basis, to provide insights that would not be readily available elsewhere. We are also very operations focused; therefore we can include production insights unavailable from others.

The challenge is, of course, currently diverse and fragmented, so in this visionary report we can offer a consolidation of current knowledge, along with direct field interviews with the developers of next generation solutions. We believe the timeliness and vision will assist resin producers, process licensors, catalyst manufacturers and the logistics systems in improving the rate of recycling in a faster manner. There is much rhetoric and confusion that needs to be uncoiled to create a solid pathway forward. If we are to collectively resolve this issue together, then some sound thinking and minds must prevail. By consolidating this global information, with the best scientific and commercial minds, we have the opportunity to make some better investment and R&D investment decisions.

Industry has taken significant steps recently:

- On January 16, 2019 The Alliance to End Plastic Waste (AEPW) was launched, which has committed over $1BIL, with the goal of investing $1.5 BIL over the next five years. The founding members of this consortium include; BASF, Berry Global, Braskem, Chevron Phillips, Clariant, Covestro, Dow, DSM, ExxonMobil, Formosa Plastics, Henkel, LyondellBasell, Mitsubishi Chemical, Mitsui Chemical, NOVA Chemicals, Oxychem, Polyone, Procter & Gamble, Reliance, SABIC, Suez, Shell, SCG Chemicals, Sumitomo Chemical, TOTAL, Veolia, and Versalis (ENI).

 Just as of July 10th, 2019 this now consists of 12 new companies; Equate Petrochemical, Gemini, Grupo Phenix, Mondi, Novolex, Pepsi Co, Sealed Air Corporation, Sinopec, SKC, Storopak, TOMRA and Westlake. In announcing this expansion, AEPW stated by advancing a global coordinated effort focused on recovering, recycling and reusing plastics, we will develop a global business model that creates value from waste.

- In the polystyrene segment “Styrenics Circular Solutions (SCS)” was formed in December, 2018 with four founding members INEOS Styrolution, TOTAL, Trinseo, and Versalis (Eni); in June, 2019 Repsol joined. This consortium has teamed up with Agilyx to develop depolymerization back to monomers.
In the PET segment, commercial operations are already underway, to depolymerize using hydrolysis or glycolysis processes. Eastman just announced conversion of their Kingsport, TN to recycle waste PET into new products. Others, including Dow, Shell and even Kodak have chosen directions, as PET is already the most recycled plastic globally, enhanced by the ability to convert PET into yarns and fabrics for the clothing industries. These processes are enhanced using Zn acetate (and other) catalysts. We will benchmark these alternatives.

Because Styrenics and PET are so well developed, although we will have cameo developments, our intent is to focus on the largest challenge involving polyolefins (PO) and mixed plastics wastes (PET/PO, PVC, nylon and other mixtures) which will represent about 75-80% of this report, where a better and deeper understanding is needed.

A. New Advanced Catalytic Solutions

The use of heteroatom titanates in this application is not new; in fact, Salvatore Monte of Kenrich Petrochemicals first published in 1973 and many papers have been widely circulated up to the present. Much evidence exists that both titanate and zirconate coupling agents act as a repolymerization catalyst in the unfilled or filled macromolecular melt to increase mechanical properties.

Figure 1. Points to the SIX FUNCTIONS of a neopentyl (diallyl) oxy, tri(dioctyl)phosphato zirconate and why Function 1 COUPLING is different than silanes (Kenrich Petrochemicals, 2019).
Figure 2. Illustrates FUNCTION 1 coordination coupling of a neoalkoxy titanate to non-silane reactive 3-micron CaCO₃ (Kenrich Petrochemicals, 2019).

The difference today, is that more advanced chemistry is available from organometallics since the metallocene revolution, back in the late 1980-1990’s. We intend to explore new catalytic chemistries, that can be even more compatible with today’s producer resins.

Figure 3. Reactive compounding shear needed in the melt. A common mistake is run tests under the same conditions (Kenrich Petrochemicals, 2019).
As you can see from papers at the forefront of this approach in its early years (Chien et al., 1997) and ExxonMobil (Baugh and Canich, 2008), homogeneous catalysts of new generations hold a high promise for more cost/performance advanced techniques. With TCGR’s long history in single-site catalysis and monitoring new advanced techniques, we are planning to add considerable value to polyolefin and mixed plastics compatibilization in this field. No one within industry is more qualified to investigate these forward-looking cost/performance alternatives.

![Catalytic Approaches for Specific Comonomer Incorporation](image)

Figure 4. Catalytic Approaches for Specific Comonomer Incorporation (Chien et al., 1997)

B. New Advanced Compatibilizer Solutions

Many industry papers have summarized commercially available compatibilizers including those from The Society of Plastics Industry or SPI (SPI, 2015). The current challenge is not available solutions but rather cost/performance ones for commercial recyclers. Also, one of the challenges is that each batch of mixed plastics has a different composition and most recyclers are not sophisticated to be able to understand the chemistry to adjust to these moving targets within the field. No “one-size-fits-all” is a common phrase within the industry.

One of the objectives of this study is to provide industry guidance to resin producers, technology developers and ultimately to recyclers on how to better anticipate these mix changes, to reduce rejected waste. We would encourage subscribers to support the education needs in the market place, needed to bridge these gaps.

In order to focus the content of this well researched document, we also propose more direct discussions with our project team. Specifically, with sufficient “charter subscriber” ToC inputs (a practice always followed by TCGR multi-clients) we expect to tailor the scope/content for subscribers to make it a study, “by the industry, for the industry.” This is a unique hallmark of our operations.
References
Azocleantech, 2017
Circular Economy Action Plan, January 2018
James C. W. Chien, Yasumasa Iwamoto, Marvin D. Rausch, Wolfgang Wedler and Henning H. Winter
The Alliance to End Plastic Waste, https://endplasticwaste.org/

III. THE NEED FOR THIS STUDY
The case for choosing this subject has never been clearer. Due to increasing environmental drivers, the need for such a study has never been more timely. Major plastics producers are now committed to significant reductions in plastic landfill, and the reduction of waste plastics finding their way into our oceans. The older methods of disposal like incineration or even pyrolysis are no longer acceptable due to tightening emissions and CO2 regulations.

One of the key issues is that different plastics waste streams do not mix when thermally heated, like oil and water. So new compatibilizer technologies are an R&D direction that needs to be better explored. It is also clear that pyrolysis approaches are not an economic solution. This study will reveal more advanced approaches being undertaken on a global basis. There are opportunities in catalysis, in determining the molecular structure of the resin (including co-monomer incorporation containing functional groups) to design-in re-use/recycle functionality.

The benefits of aggregating the multiple approaches into one study creates an opportunity to extract and determine which approaches or pathways are most beneficial given the local circumstances, providing value to chemical (olefins and other monomer) producers and suppliers of different types of plastics.

Critical topics this study will address include:

1. State-of Art (SoA) in industry investments and partnerships in existence.
2. New pipeline technologies in for the next 5-10 years, including benchmarking economics where available, key players, pilots and R&D investments.
3. Regional outlooks based on market opportunities and regulatory drivers.
4. Strategies for implementation.
This study also complements other studies undertaken by The Catalyst Group Resources, demonstrating TCGR’s unique capability and resources to deliver exceptional insight. Recent multi-client studies can be seen on http://www.catalystgrp.com for more detail.

- **Polyolefin (PO) Catalysts and Processes: Competitive Implications of Industry Consolidation** (completed in July 2018)

- **Progress in Technology for Polyolefin Production: Quantifying the Value-Added of Advanced Catalysts, Co-catalysts/Activators and Stereoregulators** (completed in December 2011)

IV. SCOPE AND METHODOLOGY

As seen in the report’s Table of Contents (ToC) on page 8 that has been revised/expanded to reflect the inputs/feedback of “charter” subscribers (i.e., those who signed up prior to study launch), TCGR’s recently launched study will focus on new technologies in pilot and in the R&D pipeline, that enhance the economics through catalysis and compatibilizers which retain or enhance virgin resin properties, so that we can find pathways beyond lower value reuses such as road asphalt and park benches. There is already considerable work being undertaken by Borealis Everminds™ and LyondellBasell in these directions. At the latest Society of Plastics Engineers (SPE) “Polyolefins Conference” in Houston (February 2019), we also conducted interviews with a number of companies developing interesting new compatibilization technologies.

SECTION III will summarize the current State-of-Art (SOA) for all key resins including PET, Styrenics, Polyolefins and Thermoplastics in general.

SECTION IV will document pipeline technologies from both patent analyses and field interviews with producers and pilot companies.

SECTION V will interview resin producers and converters to obtain a better clarity on the industry needs and wants moving forward during the next 5-10 years.

SECTION VI will document pending regional regulations, as well as access the likely costs on non-compliance.

SECTION VII will document existing and pending regulations globally, regional and country specific e.g. bags and other single use plastics used by consumers and being regulated.

SECTION VIII is where TCGR’s assessment will collective congregate the most value form existing technologies, the road-map and where to best to congregate investments.
Plastics Recycling and the Circular Economy: Catalytic and Compatibilization Solutions

Revised/Expanded Table of Contents*

I. Introduction/Background/Environment
II. Executive Summary
III. Recycling of Plastics - State of Art and Emerging Technologies
 A. Polyolefins, PET, Styrenics and mixed plastics recycling market
 1. Post-consumer recycling
 2. Post-industrial recycling
 B. Recycling Technologies
 1. Reuse/repurposing/upcycling
 2. Mechanical recycling
 3. Gasification
 C. Limitations to current practice
 1. Scalability
 2. Segregation and sorting
 3. Performance gaps
 4. Life Cycle Analyses
 D. Emerging Technologies by Provider
 1. Loop Industries
 2. Pure Cycle Technologies
 3. BP
 4. Agilyx
 5. Fraunhofer Polystyrene Loop
 6. Unilever CreSolv
 7. APK Newcycling
 8. IBM VolCat
IV. New Mixed Plastics Catalytic Technologies
 A. Beyond Titanates and Zirconates
 1. New catalytic technologies for mixed plastics
 2. Advanced single-site catalysts
 B. Emerging Technologies
V. New Compatibilization Technologies
 A. Current Compatibilizer Solutions by Provider
 1. Arkema
 2. BASF
 3. Dow
 4. DuPont
 5. ExxonMobil
 6. Kraton
 7. Others
 B. Emerging Technologies
VI. R&D Pipelines and Directional Investment for the Next 5-10 Years
 A. Commercial strategies and patent analysis by producer
 B. Early stage (TRL 1-3) R&D
 1. Catalytic depolymerization
 2. Catalysts for upcycling of polymers
 3. Functional monomers
 4. Additives/Compatibilizers
 5. New Polymer types
 6. Remelt
VII. Voice of Customer – What Producers Are Saying and Doing
 A. Producer point of view
 B. Recycler point of view
 C. Expectations for practical solutions and timing
VIII. Regulations and Pending Issues
 A. Global regulatory actions
 B. Actions from consumer goods producers and consumer intention
IX. Recommendations and Conclusions

*Charter subscribers (those who signed up for the study before launch) had the opportunity to work with TCGR to further refine the scope of the report by nominating specific voice of customer and/or study content as well as delineating areas of particular interest for inclusion in the assessment.
V. QUALIFICATIONS

The Catalyst Group Resources, a member of The Catalyst Group, works with clients to develop sustainable competitive advantage in technology-driven industries such as chemicals, refining, petrochemicals, polymers, specialty/fine chemicals, biotechnology, pharmaceuticals, and environmental protection. We provide concrete proven solutions based on our understanding of how technology impacts business.

Using our in-depth knowledge of molecular structures, process systems, and commercial applications, we offer a unique combination of business solutions and technology skills through a range of client-focused services. Often working as a member of our clients' planning teams, we combine our knowledge of cutting-edge technology with commercial expertise to:

- Define the business and commercial impacts of leading-edge technologies
- Develop technology strategies that support business objectives.
- Assess technology options through strategy development, including:
 - Independent appraisals and valuations of technology/potential
 - Acquisition consulting, planning and due diligence
- Provide leading-edge financial methodology for shareholder value creation
- Lead and/or manage client-sponsored R&D programs targeted through our opportunity identification process.
- Provide leading information and knowledge through:
 - World-class seminars, conferences and courses
 - Timely technical publications

The client-confidential assignments conducted by The Catalyst Group include projects in:
- Reinventing R&D pipelines
- Technology alliances
- Technology acquisition
- Market strategy

We have built our consulting practice on long-term client relationships, dedication, and integrity. Our philosophy is clear and focused:

We Provide the "Catalysts" for Business Growth by Linking Technology and Leading-Edge Business Practices to Market Opportunities
VI. DELIVERABLES AND PRICING

This report is timely and strategically important to those industry participants and observers both monitoring and investing in the development and implementation of technologies for the conversion of waste mixed plastics recycling. TCGR’s report, based on technology evaluations, commercial/market assessments and interviews with key players goes beyond public domain information. As a result, subscribers are requested to complete and sign the “Order Form and Secrecy Agreement” on the following page.

The study, “Plastics Recycling and the Circular Economy: Catalytic and Compatibilization Solutions” is expected to be available in April/May 2020.

Post-launch subscribers* after launch US$21,000

Plastics Recycling and the Circular Economy: Catalytic and Compatibilization Solutions

Report in PDF format, in addition to subscription price US$1,000

* Charter subscribers (those who signed up for the study before its launch) had the opportunity to work with TCGR to further refine the scope of the report by nominating specific voice of customer and/or study content as well as delineating areas of particular interest for inclusion in the assessment.
ORDER FORM AND SECRECY AGREEMENT

The Catalyst Group Resources, Inc. Tel: +1.215.628.4447
Gwynedd Office Park Fax: +1.215.628.2267
P.O. Box 680 e-mail: tcgr@catalystgrp.com
Spring House, PA 19477 - USA - website: www.catalystgrp.com

Please enter our order for “Plastics Recycling and the Circular Economy: Catalytic and Compatibilization Solutions” to be completed in April/May 2020, as follows:

_____ “Plastics Recycling and the Circular Economy: Catalytic and Compatibilization Solutions,” as a “post-launch” subscriber for US$21,000.

_____ Please enter our order for the study to be delivered in PDF (Adobe Acrobat) format for use across our sites/locations (i.e., site license) for an additional $1,000.

_____ Please send us ______ additional printed copies @ $250 each.

In signing this order form, our company agrees to hold this report confidential and not make it available to subsidiaries unless a controlling interest (>50%) exists.

Signature: __________________________________ Date: _____________________
Name: ______________________________________ Title: _____________________
Company: __________________________________
Billing Address: ________________________________
Shipping Address (no P.O. Boxes): ________________________________

Express delivery services will not deliver to P.O. Boxes

City: __________________________ State/Country: __________
Zip/Postal Code: __________________________ Phone: _________________
E-mail: __________________________ Fax: ______________________

This report and our study findings are sold for the exclusive use of the client companies and their employees only. No other use, duplication, or publication of this report or any part contained herein is permitted without the expressed written consent of The Catalyst Group Resources.