ENERGY EFFICIENCY/CO₂ MITIGATION CASE STUDY SERIES - VOL. 3: ALLIED INDUSTRIES

A techno-economic investigation commissioned by the members of the Carbon Dioxide Capture & Conversion (CO₂CC) Program

Client Private
August 2020
The Carbon Dioxide Capture & Conversion (CO₂CC) Program

The CO₂CC Program is a membership-directed consortium whose members are involved in the development, monitoring and utilization of the “state-of-the-art” in technological progress and commercial implementation of carbon dioxide capture/clean-up and conversion. By the direction of the member companies (through balloting and other interactive means), the program delivers a range of timely and insightful information and analyses which are accessible exclusively to members and protected by confidentiality agreements. The objective is to document technically and commercially viable options for CO₂ capture/clean-up as well as its conversion into useful products which meaningfully address the challenges posed by CO₂ life-cycle and overall sustainability issues.

Members receive three in-depth CO₂CC Techno-economic Reports which are written by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CO₂CC Communiqués (delivered via e-mail) which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CO₂CC Program Annual Meeting.

The Carbon Dioxide Capture & Conversion (CO₂CC) Program is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact John J. Murphy at John.J.Murphy@catalystgrp.com or +1.215.628.4447 (x1121).
CONTENTS

EXECUTIVE SUMMARY .. xxxiii

1. INTRODUCTION .. 1
 1.1 BACKGROUND .. 1
 1.1.1 Reduction of GHG Emissions ... 1
 1.1.2 Strategies for Reducing GHG Emissions ... 1
 1.1.3 Environmental and Economic Impact of GHG Emissions 2
 1.2 SCOPE AND OBJECTIVES .. 3
 1.3 METHODOLOGY .. 3
 1.4 KEY CONTRIBUTORS .. 3
 1.4.1 Proprietary TCGR Reports .. 5
 1.4.2 Sources of Industry Data ... 5
 1.5 REFERENCES ... 6

2. CEMENT INDUSTRY ... 7
 2.1 DECARBONISATION METHODS .. 10
 2.1.1 Energy Efficiency .. 10
 2.1.2 Heat Recovery Improvements .. 11
 2.1.3 Lower Clinker/Lower Carbon Cements ... 15
 2.1.4 Biomass and Waste Fuels ... 19
 2.1.5 Hydrogen Fuel .. 19
 2.1.6 Digitalisation/IoT strategies .. 20
 2.1.7 Carbon Capture, Utilisation and Storage ... 21
 2.1.8 Maximum Potential for Carbon Reduction .. 25
 2.2 CASE STUDIES .. 30
 2.2.1 China National Building Material Company (CNBM) .. 30
 2.2.2 CEMEX Climafuel .. 31
 2.2.3 Lafarge – Biomass .. 32
 2.2.4 Siemens – Efficiency .. 33
 2.2.5 Schneider Electric – Digitalisation/IoT ... 34
 2.2.6 LEILAC .. 35
 2.2.7 Hanson – EcoPlus .. 37
 2.2.8 CarbonCure .. 38
 2.2.9 Heidelberg Cement/Norcem .. 40
2.3 HURDLES OVERCOME AND REMAINING CHALLENGES .. 40
2.4 LESSONS LEARNED .. 41
2.5 SUMMARY AND OUTLOOK ... 42
2.6 GLOSSARY .. 43
2.7 REFERENCES ... 43

3. STEEL INDUSTRY .. 59
 3.1 DECARBONISATION METHODS .. 60
 3.1.1 Energy Efficiency ... 64
 3.1.2 Heat Recovery Improvements ... 66
 3.1.3 Hydrogen Fuel ... 70
 3.1.4 Biomass and Waste Fuels .. 71
 3.1.5 Digitalisation/IoT strategies .. 77
 3.1.6 Carbon Capture, Utilisation and Storage (CCUS) ... 81
 3.1.7 Maximum Potential for Carbon Reduction ... 82
 3.2 CASE STUDIES ... 84
 3.2.1 ArcelorMittal - SIDERWIN – Iron Ore Electrolysis ... 85
 3.2.2 ArcelorMittal – Carbon2Value .. 87
 3.2.3 ArcelorMittal – TORERO Biocoal/CO to Ethanol ... 90
 3.2.4 Baowu/Rio Tinto/Tsinghua University Innovations .. 91
 3.2.5 LKAB-SSAB-Vattenfall - HYBRIT .. 93
 3.2.6 Tata Steel – Combined Heat and Power (CHP) ... 95
 3.2.7 Lanzatech - Steelanol .. 96
 3.2.8 ULCOS Consortium - Hisarna ... 98
 3.2.9 MIDREX – Al-Reyadah Plant .. 99
 3.2.10 STEPWISE – Hydrogen and CCUS ... 101

3.3 HURDLES OVERCOME AND REMAINING CHALLENGES 103
3.4 LESSONS LEARNED .. 105
3.5 SUMMARY AND OUTLOOK ... 106
3.6 GLOSSARY .. 107
3.7 REFERENCES ... 108

4. MINING INDUSTRY .. 117
 4.1 METHODS FOR DECARBONISATION ... 119
 4.1.1 Improvements to Energy Efficiency ... 121
 4.1.2 Improvements to Heat Recovery ... 123
4.1.3 Integration of Renewable Electricity .. 126
4.1.4 Electrification of Plant Operations ... 133
4.1.5 Usage of Biomining ... 134
4.1.6 Improvements to Mechanical Treatment ... 135
4.1.7 Steam-Assisted Gravity Drainage (SAGD) ... 136
4.1.8 Abatement of Methane ... 138
4.1.9 Maximum Potential for Carbon Reduction .. 142

4.2 CASE STUDIES .. 144

4.2.1 Anglo American- Mechanical/Advanced Fragmentation 145
4.2.2 Goldfields- PV Solar ... 145
4.2.3 Rio Tinto Aluminium Smelter .. 147
4.2.4 LaFarge – Biomass .. 147
4.2.5 JX Nippon – Biomining .. 148
4.2.6 Goldcorp’s Borden Lake – Electrification ... 149
4.2.7 MEG Energy – SAGD .. 150
4.2.8 Anglo Coal – Methane Abatement .. 151
4.2.9 BHP Billiton – Methane Abatement ... 152

4.3 HURDLES OVERCOME AND REMAINING CHALLENGES 155

4.4 LESSONS LEARNED ... 156

4.5 SUMMARY AND OUTLOOK ... 157

4.6 GLOSSARY .. 158

4.7 REFERENCES ... 159

5. INDEX ... 167
FIGURES

Figure 1.1 Changing global surface temperature anomalies ... 2
Figure 1.2 Global Ocean Heat Content and Thermosteric Sea Level Rise 1960-2020 3
Figure 2.1 Cement process (i.e. excluding fuel) emissions for years 1998 – 2018 7
Figure 2.2 The cement production process. The parts with question marks are not core to the process ... 8
Figure 2.3 Historical clinker ratio in China according to a number of sources 15
Figure 2.4 Schematic illustration of the direct separation reactor concept for the direct capture of CO₂ evolved during calcination. Configuration shown for a limestone feed (CaCO₃) with heating by natural gas (CH₄) ... 23
Figure 2.5 The calcium looping cycle applied to the cement process ... 25
Figure 2.6 Net CO₂ Emissions relative to cement comprised of 100% clinker, with fuel supplied by hydrogen or biomass, with varying levels of carbon capture applied. Efficiency comprises a 20% reduction in CO₂ production from digitalisation and 5% for other gains .. 29
Figure 2.7 Changes in CO₂ relative to a blend containing 100% clinker, with and without the addition of CCS .. 30
Figure 2.8 (a) Equilibrium pressure of CO₂ during calcination of CaCO₃, and (b) Calculated isothermal conversion of CaCO₃ in a DSR-type reactor ... 36
Figure 2.9 The Walkie Talkie seen from The Blavatnik Building © Copyright Neil Theasby and licensed for reuse under this Creative Commons Licence (CC BY-SA 2.0) .. 38
Figure 3.1 Crude steel production, showing (a) total global production between 1950-2018, and (b) production by country in 2018 .. 59
Figure 3.2 Schematic overview of the three predominant processes within the Steel Industry, namely (i) Preparation, (ii) Ironmaking, (iii) Steelmaking, and (iv) Forming processes .. 61
Figure 3.3 Total energy demand toward the production of steel as well as the specific energy intensity per ton of crude steel between 2000-2017, categorised by energy type .. 65
Figure 3.4 Estimated heat recovery options for a modelled steel plant of commercial scale (~3.8 mtCS/y), showing the temperature and energy of various waste heat streams available from different manufacturing processes. Streams are categorised as either solid (s), liquid (l) or gaseous (g) .. 69
Figure 3.5 Comparison of estimated costs per ton of steel using direct reduction of iron (DRI) and electric arc furnaces (EAF), assuming (a) natural gas (NG), (b) natural gas with capture (w/CCS), and (c) hydrogen .. 71
Figure 3.6 Effect of pyrolysis temperature on the carbon, oxygen and hydrogen content of biomass (X), the heating value of the resulting solids (H) and the yield of solid product yield (η) .. 73
Figure 3.7 A selection of sintering indices for various blends of biochar and breeze coke, including sinter yield (%), product yield (%), tumble index (%), and fuel consumption (kg/t) ... 74

Figure 3.8 Yields of various substances from thermal decomposition of different types of plastic at different scales. For commercial scale tests, the waste plastic mix was composed of PE (21.4%), PP (13.7%), PS (24.8%), PVC (5.2%), PET (15.5%), and Others (19.4%) ... 76

Figure 3.9 (a) Integration of digitalisation vertically, horizontally, or within the life-cycle of systems, and (b) organisation of digitalisation between complete centralisation and decentralisation .. 78

Figure 3.10 Proportion of steel-related digitalisation projects within the RFCS programme by category between 2003 to 2018 (Note: [a] including agglomeration processes such as sintering, pelletisation, etc.) ... 78

Figure 3.11 Costs for capture technologies in the steel industry, namely (a) cost against primary energy consumption, and (b) cost breakdown for each capture technology. Steel processes include: air-blown blast furnace (ABF), top gas recycling blast furnace (TGR-BF), smelting reduction vessel (SRV), and lime kiln (LK). Capture includes: amine scrubbing (AS), pressure swing adsorption (PSA), membrane separation (MS), calcium looping (CaL) and hydrate crystallisation (HC) .. 82

Figure 3.12 Reduction potential by category of (a) the average of cement, steel and chemicals industries, and (b) exclusively the steel industry ... 83

Figure 3.13 Optical, SEM, and EDS (Fe and O) images of electroreduced Fe$_2$O$_3$ pellets sintered at 1100 °C for 2h, followed by electroreduction in 60 wt% NaOH at 110 °C with 1.7 V. Pellet diameter approximately 3.6 mm .. 87

Figure 3.14 Comparison of the relative capital (CAPEX) and operating (OPEX) costs of pressure swing adsorption (PSA) and solvent absorption (MEA) separation of off-gases from the steel industry .. 88

Figure 3.15 Potential scenarios for the utilisation of off-gases in steel manufacturing toward the synthesis of methanol .. 89

Figure 3.16 (a) Images of iron-carbon agglomerates (ICAs) before and after gasification between 950-1100 °C, and (b) Effect of iron loading within ICAs on performance parameters, namely coke reactivity index (CRI) and coke strength after reaction (CSR) ... 92

Figure 3.17 Schematic overview for the decarbonised manufacture of steel using electrolytically-derived hydrogen, involving ironmaking by direct reduction followed by downstream steelmaking by electric arc furnace .. 94

Figure 3.18 Technoeconomic assessment of DRI-EAF steel production with renewable hydrogen, showing (a) the effect on energy consumption by charging scrap steel, and the effect of electricity cost on overall production cost for (b) 100% charging of DRI (c) 50% charging of DRI ... 95

Figure 3.19 CHP in the UK steel industry between 2010 and 2018, categorised by fuel type including blast furnace off gas (BFOG), coke oven off gas (COG), natural gas (NG) and fuel oil (FO) ... 96
Figure 3.20 Schematic overview of syngas fermentation to produce bioethanol, using blast furnace off gas (BFOG) from the steel industry. Process developed as part of the Steelanol project, using technology originally developed by Lanzatech 97

Figure 3.21 Schematic illustration of the HIsmel t furnace within the HIsarna process, showing the Cyclone Converter Furnace (CCF) situated above the freeboard of the Smelting Reduction Vessel (SRV) ... 98

Figure 3.22 Schematic overview of the process used at the Al-Reyadah. Upstream steel manufacturing by natural gas fueled direct reduction of iron (DRI), with downstream capture by amine scrubbing (MEA) .. 100

Figure 3.23 Schematic overview of the sorbent enhanced water gas shift (SEWGS) technology developed to utilise blast furnace off gases (BFOG) from the steel industry as part of the STEPWISE project ... 101

Figure 3.24 Sorption enhanced water-gas shift (SEWGS) cycle for nine reactors operating in an eleven step cycle comprised of (i) syngas adsorption, (ii) steam rinse, (iii)-(v) pressure equalisation, (vi) depressurisation, (vii) steam purge, (viii)-(x) pressure equalisation, (xi) repressurisation .. 102

Figure 4.1 Total Scope 1 and Scope 2 Emissions from Some Mining Companies (Year: 2016) .. 118

Figure 4.2 Earnings split by commodity (2015-2016) ... 119

Figure 4.3 Renewable electricity commissioned capacity .. 127

Figure 4.4 Cumulative commissioned renewable electricity commissioned capacity 127

Figure 4.5 SAGD process .. 137

Figure 4.6 Anthropogenic methane emissions by source in 2010 ... 138

Figure 4.7 VAM and multiple CMM end-use .. 139

Figure 4.8 Upstream emissions from coal mines relative to the direct CO₂ impact of burning coal .. 141

Figure 4.9 Absolute upstream emissions from coal mines .. 141

Figure 4.10 Block diagram of a copper heap bioleaching process .. 149

Figure 4.11 SAGD schematic ... 150

Figure 4.12 Different types of methane emissions associated with coal mines 151

Figure 4.13 Illustration of the VOCSIDIZER™ technology ... 153

Figure 4.14 VOCSIDIZER™ technology, steam boiler, and conventional steam turbine generator – converting it to a conventional power plant .. 154

Figure 4.15 Principle layout of project WestVAMP, converting Ventilation Air Methane (VAM) to electricity .. 154

Figure 4.16 Summary of mining decarbonisation levers .. 155
TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table ES.1</td>
<td>Case Studies for Decarbonisation in the Cement Sector</td>
<td>xxxiv</td>
</tr>
<tr>
<td>Table ES.2</td>
<td>Case Studies for Decarbonisation in the Iron & Steel Sector</td>
<td>xxxvi</td>
</tr>
<tr>
<td>Table ES.3</td>
<td>Case Studies for Decarbonisation in the Mining Sector</td>
<td>xxxix</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>CO₂ Intensities for a Number of Different Global Cement Manufacturers</td>
<td>8</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>A Selection of Recent Waste Heat Recovery Announcements Around the World (Excluding China)</td>
<td>12</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>List of ORC Manufacturers with More than 10 Installations or Total Power Generation > 3MW before December 31st 2016</td>
<td>14</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Average Clinker Ratios for a Number of Global Cement Companies</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Energy Savings from Different Process Adaptations</td>
<td>26</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Composition of Various off Gases Generated Throughout the Steel Manufacturing Process</td>
<td>64</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Energy Intensity of the Predominant Steel Production Routes, Namely BF-BOF, DRI-EAF and Scrap-EAF</td>
<td>66</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Selection of the Opportunities for Heat Recovery and Efficiency Improvements in Steelmaking</td>
<td>67</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>A Selection of Direct Reduction Processes, Categorised by their Reductant, Consumption Rates, and Typical Degree of Metellization Achieved</td>
<td>70</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Comparison of a Material Selection of Properties for Biomass-Derived and Fossil-Derived Fuels</td>
<td>72</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Estimated Potential of Biomass in Steel Industry</td>
<td>75</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Case Study Examples of Digitalisation</td>
<td>79</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Process Conditions of Spent Gas Streams Produced Across a Typical Steel Mill Assessing Suitability for Downstream CCUS</td>
<td>81</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Comparison of Electrochemical Reduction of Various Iron Oxide Materials</td>
<td>86</td>
</tr>
<tr>
<td>Table 3.10</td>
<td>Comparison of Conventional Blast Furnace (BF) and Oxygen Blast Furnace (OBF) with/without Top Gas Recycling (TGR)</td>
<td>93</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>League Table Summary for Mining Companies</td>
<td>118</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Energy Savings Measures</td>
<td>122</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>A Summary of Waste Heat Recovery Technology and Their Operating Temperature Ranges</td>
<td>125</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Renewable Energy Implemented and Mine Characteristics</td>
<td>128</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Case Studies Analysis for Renewable Energy Projects in Mining</td>
<td>130</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Project GHG Emission Reduction Values and Diesel Savings</td>
<td>131</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>SWOT Analysis of Renewable Energy Projects in Mining Operations</td>
<td>132</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Goldfields Country Specific Decarbonisation Strategy</td>
<td>146</td>
</tr>
</tbody>
</table>