ADVANCES IN NON-NOBLE-METAL CATALYSTS FOR REFORMING AND CONVERSION OF HYDROCARBONS

A technical investigation commissioned by the members of the Catalytic Advances Program

Client Private
July 2021
The Catalytic Advances Program (CAP)

The Catalytic Advances Program (CAP) is an information resource for research and development organizations in the petroleum, chemical, and polymer industries. By the direction of the member companies (through balloting and other interactive means), the program delivers a range of timely and insightful information and analyses which are accessible exclusively to members and protected by confidentiality agreements. The objective is to provide a technical update on commercially viable advances in catalysis as well as benchmark commercial advances in catalysis and process technology.

Members receive three in-depth CAP Technical Reports which are written and peer reviewed by leading scientists and experienced industry professionals in areas selected by the membership (via ballot); weekly CAP Communications (delivered via e-mail) which provide the latest updates on technical breakthroughs, commercial events and exclusive development opportunities; and attendance at the CAP Annual Meeting.

The Catalytic Advances Program (CAP) is available on a membership basis from The Catalyst Group Resources (TCGR). For further details, please contact Chris Dziedziak at cdziedziak@catalystgrp.com or +1.215.628.4447.
CONTENTS
EXECUTIVE SUMMARY ... xv
1. INTRODUCTION ... 1
 1.1 INDUSTRY DRIVERS/ECONOMICS ... 1
 1.2 REGULATORY ENVIRONMENT ... 2
 1.3 REPORT SCOPE AND OBJECTIVES ... 4
 1.4 REMAINING CHALLENGES AND FUTURE PERSPECTIVES ... 4
 1.5 AUTHORS & CONTRIBUTORS ... 5
 1.6 REFERENCES .. 6
2. ADVANCES IN NON-NOBLE-METAL CATALYSTS FOR NATURAL GAS AND NAPHTHA REFORMING .. 9
 2.1 CONVENTIONAL AND NOVEL REFORMING CATALYSTS .. 9
 2.1.1 Target Products - H₂, CO, Syngas ... 9
 2.1.1.1 Natural Gas, Methane Steam Reforming ... 9
 2.1.1.2 Naphtha, n-Heptane Steam Reforming .. 10
 2.1.2 Thermodynamic and Kinetic Background ... 10
 2.1.2.1 Dry Reforming of Natural Gas, Methane ... 10
 2.1.2.2 Steam Reforming of Natural Gas, Methane .. 11
 2.1.2.3 Autothermal Reforming of Natural Gas, Methane .. 11
 2.1.2.4 Bireforming of Natural Gas, Methane ... 11
 2.1.2.5 Tri-reforming of Natural Gas, Methane ... 12
 2.1.2.6 Naphtha Steam Reforming Including Pre-reforming 12
 2.1.3 Performance of Conventional and Novel Catalysts and Mechanisms of Action for Reforming of Natural Gas and Naphtha ... 12
 2.1.3.1 Dry Reforming of Natural Gas, Methane ... 12
 2.1.3.2 Steam Reforming of Natural Gas, Methane ... 23
 2.1.3.3 Autothermal Reforming of Natural Gas, Methane ... 27
 2.1.3.4 Bireforming of Natural Gas, Methane .. 30
 2.1.3.5 Tri-reforming of Natural Gas, Methane .. 32
 2.1.3.6 Steam Reforming of Propane .. 33
 2.1.3.7 Steam Reforming of Naphtha and Higher Hydrocarbons 34
 2.1.4 Steam Reforming of Waste Plastic Pyrolysis Volatiles and Plastic Waste 37
 2.1.4.1 Steam Reforming of Waste Plastic Pyrolysis Volatiles 37
 2.1.4.2 Reforming of Volatiles from Pyrolysis of Plastic Waste 37
 2.1.4.3 Reforming Plastics Dissolved in Phenol .. 38
2.1.5 Mechanistic Advances and In Situ/Operando Studies ... 39
 2.1.5.1 Dry Reforming of Natural Gas, Methane ... 39
 2.1.5.2 Steam Reforming of Natural Gas, Methane .. 43
 2.1.5.3 Bireforming of Natural Gas, Methane ... 43
 2.1.5.4 Tri-reforming of Natural Gas, Methane ... 44
2.2 NOVEL ENERGY INPUT FOR REFORMING .. 44
 2.2.1 Electrically Heated Reactors ... 45
 2.2.2 Microwave Assisted Reforming ... 45
 2.2.3 Light-driven Reforming ... 46
 2.2.3.1 Photocatalytic Dry Reforming of Methane ... 46
 2.2.3.2 Photocatalytic Steam Reforming of Methane .. 48
 2.2.3.3 Photocatalytic Bireforming of Methane .. 49
 2.2.3.4 Solar Power Assisted Reforming (Concentrated Solar Power (CSP)) 49
 2.2.4 Plasma Reforming with Dielectric Barrier Discharge .. 52
 2.2.4.1 Dry Methane Reforming ... 52
 2.2.4.2 Steam Methane Reforming ... 54
 2.2.5 Combination of Different Energy Inputs ... 55
 2.2.5.1 Microwave Plasma Assisted Reforming .. 55
 2.2.5.2 Plasma Photocatalysis Assisted Reforming .. 56
2.3 NOVEL PROCESS CONFIGURATIONS .. 56
 2.3.1 Reforming Combined with Separation ... 57
 2.3.1.1 Chemical Looping ... 57
 2.3.1.2 Membrane Reactors ... 61
 2.3.2 Sorption-Enhanced Water Gas Shift Reaction ... 64
2.4 REMAINING HURDLES AND FUTURE PERSPECTIVES ... 65
 2.4.1 Dry Methane Reforming ... 65
 2.4.2 Steam Methane Reforming ... 65
 2.4.3 Reforming with Novel Energy Input ... 65
 2.4.3.1 Electrified Reactors in SRM .. 65
 2.4.3.2 Microwave-assisted Methane Reforming .. 65
 2.4.3.3 Solar Driven DRM ... 66
 2.4.3.4 Photocatalytic Methane Reforming ... 66
 2.4.3.5 Dielectric Discharge Barrier Plasma–assisted DRM 66
 2.4.3.6 Reforming by Microwave Plasma ... 66
 2.4.3.7 Membrane Reactors in SRM ... 67
3. ADVANCES IN NON-NOBLE-METAL CATALYSTS FOR REFORMING OF ORGANIC AND OTHER COMPOUNDS

3.1 REFORMING OF GLYCEOL

- Types of Catalyst Advances and Mechanism of Action

3.1.1 Glycerol

- Reactivity, Coking, and Characterization

3.1.2 Glycerol

3.2 REFORMING OF ALCOHOLS OTHER THAN GLYCEOL

- Types of Catalyst Advances and Mechanism of Action

3.2.1 Methanol

3.2.2 Ethanol

3.2.3 Butanol and Propanol

3.2.4 Other Alcohols

- Reactivity, Coking, and Characterization

3.2.2 Methanol

3.2.3 Ethanol

3.2.4 Butanol and Propanol

3.2.5 Other Alcohols

3.3 REFORMING OF CARBOXYLIC ACIDS

- Types of Catalyst Advances and Mechanism of Action

3.3.1 Acetic Acid

3.3.2 Other Acids

3.3.2 Acetic Acid

3.3.2 Other Acids

3.4 REMAINING HURDLES AND FUTURE PERSPECTIVES

3.5 REFERENCES

4. INDEX
FIGURES

Figure 2.1 Thermodynamic simulations of the molar composition in DRM using an equimolar composition of CH₄-CO₂ under 1 bar, a) in the presence and b) in the absence of reverse water gas shift reaction ... 14

Figure 2.2 a) Methane and b) CO₂ conversion and c) H₂/CO ratio obtained in DRM at 700°C with GHSV of 20000 h⁻¹ over Ni supported on Y₂O₃ nanostructured catalysts derived from double layer hydroxides. The number in the catalyst names denotes Y loading (in wt%) ... 19

Figure 2.3 a) Methane and CO₂ conversion in DRM at 800°C with WHSV = 24000 mL/(g h) using CH₄: CO₂: N₂ of 1:1:1 (vol) over Ni/Al₂O₃ prepared via impregnation (imp), Ni prepared from nickel nitrate (Nitr) or nickel oleate (Ole) via the spray pyrolysis-assisted evaporation-induced self-assembly method 22

Figure 2.4 Hydrogen concentration produced in ATR of methane as a function of TOS at 850°C over Ni/ Ceₓ₋ₓ LaₓO₂ catalysts containing different amount of La (x)...... 28

Figure 2.5 Heptane conversion as a function of time-on-stream with steam to heptane molar ratio of 7 at different temperatures over Co/Al₂O₃ calcined at different temperatures ... 36

Figure 2.6 Possible reaction mechanism for methane reforming over a) Ni/MgO-Al₂O₃ catalyst prepared by coimpregnation, b) over Ni/Mg-Al-O prepared via cation-anion double hydrolysis method. Notation: * denotes the adsorption state. 40

Figure 3.1 Molar ratio of gas products (H₂ red, CO₂ blue, CH₄ green, CO orange) and conversion of glycerol (wine) for the PtNi/γ-Al₂O₃ (0 wt%), PtNi/γ-Al₂O₃-La₂O₃ (6 wt%), PtNi/γ-Al₂O₃-CeO₂ (10 wt%), PtNi/γ-Al₂O₃-MgO (3 wt%), PtNi/γ-Al₂O₃-ZrO₂ (8 wt%) and, Ni/γ-Al₂O₃-CeO₂ (10 wt%) and Ni/γ-Al₂O₃-MgO (3 wt%) catalysts and for thermodynamic equilibrium (at 500 °C and steady-state) 97

Figure 3.2 Pathways of GSR to gaseous products ... 99

Figure 3.3 A proposed mechanism for photocatalytic glycerol valorization 100

Figure 3.4 Evolution of the Gibbs free energy (ΔG) as a function of the temperature for the main reactions involved in the SR of glycerol ... 101

Figure 3.5 Photocatalytic valorization of glycerol to dihydroxyacetone with high conversion and selectivity .. 111

Figure 3.6 TEM images and the corresponding particle size distributions for the calcined (a: CoNi/CNTs, c: CuNi/CNTs and e: FeNi/CNTs) and spent catalysts (b: CoNi/CNTs, d: CuNi/CNTs and f: FeNi/CNTs). MS represents the mean size 118

Figure 3.7 TG analysis for quantification of the deposited coke (a: Ni/CNTs, b: CoNi/CNTs, c: CuNi/CNTs, d: FeNi/CNTs and e: CNTs) .. 119

Figure 3.8 Catalytic cycle of SRMe including different kinds of reactive surface sites S_A and S_B ... 123

Figure 3.9 Reaction pathway of ethanol steam reforming via acetaldehyde steam reforming ... 128

Figure 3.10 Power generation, heat generation, utility requirement and overall efficiency for SR, ATR and SESR processes ... 130
Figure 3.11 Proposed reaction pathways for SESRB over the hybrid materials 132

Figure 3.12 Conversion and the product yield over Ni-La/Al2O3 catalyst during steam reforming of (a) methanol; (b) formic acid; (c) ethanol; (d) acetic acid. Reaction conditions: S/C = 5; LHSV = 12.7 h⁻¹; P = 1 atm... 135

Figure 3.13 Conversion and the product yield over Ni-La/Al2O3 catalyst during steam reforming of of (a) acetaldehyde; (b) acetone; (c) furfural; (e) guaiacol steam reforming. Reaction conditions: S/C = 5; LHSV = 12.7 h⁻¹; P = 1 atm 135

Figure 3.14 Steam reforming of acetic acid, furfuryl alcohol, glucose and xylose over Co/SBA-15. Reaction conditions: LHSV = 5.7 h⁻¹; S/C = 5; P = 1 atm................. 137

Figure 3.15 A schematic reaction mechanism of phenol steam reforming 137

Figure 3.16 Mechanism of the steam reforming of guaiacol over Ni/Al2O3 catalyst. Schematic illustrations of the different synthesis methods 138

Figure 3.17 Effect of the substrate structure on coke formation 149

Figure 3.18 Effect of the substrate structure on coke formation 150

Figure 3.19 Steam reforming of acetic acid over supported metal catalysts. Reaction conditions: S/C = 5; LHSV = 12.7 h⁻¹; P = 1 atm ... 155

Figure 3.20 Conversion mechanism of by-products of acetic acid catalytic reforming 156

Figure 3.21 The overall reaction mechanism of acetic acid steam reforming over Ni/Al2O3 .. 157

Figure 3.22 The reaction mechanism of acetic acid steam reforming on Ni/La2O3 catalyst ... 158

Figure 3.23 The transformation route of acetic acid over the Ni–CaO–Ca12Al14O33 catalyst ... 158

Figure 3.24 Steam reforming of the carboxylic acids in the absence of a catalyst. Reaction conditions: S/C=5; LHSV=12.7 h⁻¹; P=1 atm... 159

Figure 3.25 Steam reforming of carboxylic acids over Al2O3. Reaction conditions: S/C=5; LHSV=12.7 h⁻¹; P=1 atm ... 160

Figure 3.26 Steam reforming of carboxylic acids over Ni/Al2O3 catalyst. Reaction conditions: S/C=5; LHSV=12.7 h⁻¹; P=1 atm ... 161

Figure 3.27 The surface structure of the metal particle had great influence for the formic acid decomposition ... 162

Figure 3.28 The TEM images of the spent catalysts after steam reforming of acetic acid at prolonged reaction time. (a), (b), (c) and (d) different images of the same spent catalyst Ni/SBA-15 at S/C = 0; (e) and (f): different images of the same spent catalyst at S/C = 1 ... 165

Figure 3.29 The TEM images of the spent catalysts after steam reforming of acetic acid at prolonged reaction time. (a), (b), (c) and (d): different images of the same spent catalyst Ni/SBA-15 at S/C = 5; (e), (f), (g) and (h): different images of the same spent catalyst at S/C = 10 ... 166
Figure 3.30 Conversion of the acids and product distribution in steam reforming of carboxylic acids. Reaction conditions: S/C=1.5; T=500 °C; LHSV=12.7 h⁻¹; P=1 atm ... 167

TABLES

Table 2.1 Performance of Different Catalysts in Methane Reforming (S/C denotes steam to carbon ratio).. 68
Table 3.1 Summary of the Analyzed Literature for Glycerol SR for Non-Noble Metals Supported Catalysts... 90
Table 3.2 Quantification Results of the Deposited Coke for the Spent Catalysts 119
Table 3.3 Catalytic Performance for Glycerol Reforming Over MNi/CNTs Catalysts 120