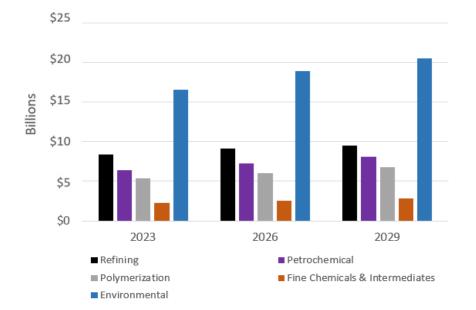


Twentieth Biennial Edition INTELLIGENCE REPORT:

Business Shifts in the Global Catalytic Process Industries, 2023-2029

STUDY PRESENTATION


October 2023

INTELLIGENCE REPORT:

Business Shifts in the Global Catalytic Process Industries, 2023-2029

TCGR's newest edition, *"The Intelligence Report: Business Shifts in the Global Catalytic Process Industries, 2023-2029,"* builds on decades of solid foundations in evaluating and quantifying the catalyst industry. The in-depth analyses and actionable insights support subscribers in making informed, data-backed decisions to achieve business development goals and success. In addition, readers can leverage our thorough perspective of the competitive landscape, opening opportunities to gain competitive advantage.

Our estimate of today's catalyst industry is nearly \$39BIL, growing to almost \$48BIL by 2029, a CAGR of 3.5%. This is supported by continued growth for fuels, plastics, pharmaceuticals, food and agriculture products, textiles, building materials and vehicles, all end-use segments for chemical products produced with catalysts. The fastest growing sectors include bio-derived fuels, chemicals and plastics, green hydrogen and other syngas derivatives and fine/specialty chemicals.

Global Catalyst Market Value, 2023-2029 (\$BIL)

The central technological achievements and strategic R&D options are highlighted, while capturing catalyst market shares in sub-segments including FCC and hydroprocessing, polyolefins and environmental catalysts, rendering a holistic evaluation of the catalyst industry.

TALYST GROUP **KESOURCES**

Intelligence > Impact

Special Feature – Critical Materials for Catalysts in the Energy Transition

Catalysis is set to play a key role in producing chemicals which function as energy carriers, including hydrogen, methanol, ammonia, liquid hydrocarbons and fuel ethers.

Crucial concerns surrounding supply/demand and criticality point to new catalysts that can reduce quantities of metals, extend lifetimes and be regenerable/recyclable.

Use the Special Feature to:

- Understand how catalysis delivers on energy transition and emissions reduction goals.
- Examine emerging markets including water and wastewater treatment.
- Quantify the demand for new products and technologies.
- Assess which metals and materials are of the highest criticality concerns.
- Develop strategies and technologies which reduce metal usage and extend their lifetime.

STUDY FEATURES

Macro Trends:

- Estimated +18-25% energy demand by 2050.
- Decarbonization needs are driving energy diversification (less coal, more NG and electricity).
- Key priorities: reducing CAPEX/OPEX for modern technologies and supply chain management for critical raw materials.
- Significant demand for energy, energy products and chemicals in APAC, Middle East and Africa.

Refining:

- Decarbonized refining push means more processes utilizing biomass, renewables and waste, with greater SAF/RD demand, hydrogen and CCS, e-fuels and continued OtC push.
- Slower EV penetration than once projected is extending "peak oil demand" into 2030s, providing >2% CAGR for refining catalysts in the 2020s.

Petrochemicals/Chemicals:

- Chemicals/monomers to support consumer pull for bio-polymers.
- Decarbonization achievement through CCS, hydrogen economy, ammonia, GTL, methanol and derivatives.
- Expect growth above GDP, notably in supply chains for polyolefins, PET, fine and specialty chemicals, and low-carbon alternatives.
- Global investments focused on APAC, Middle East, South America and Africa.

Polymerization:

- Annual market growth 4.5%, with PE/PP and PET being main drivers.
- Critical market differentiator is technology development for processes and catalysts.
- Impacts of mechanical recycling realized on virgin resin production, with cost improvement needed throughout value chain.

Environmental:

- New regulations propel annual environmental catalyst growth to 3.7%, despite slowed demand for ICE vehicles and Energy Transition impacts.
- Profound impact on all mobile segments and power and stationary backup electricity systems based on interplay with available low CI transportation fuel developments and energy trilemma supply/demand.

Provide your team with this EXCLUSIVE REPORT TODAY!

40

Number of years invested in twenty study editions. No one knows the catalyst business like TCGR.

Value of products produced from catalysis. Catalysis is the lifeblood of chemical transformations, the key that unlocks your value proposition.

Order Form & Secrecy Agreement

Please enter our order for the *Intelligence Report: Business Shifts in the Global Catalytic Process Industries, 2023-2029* (completed in October 2023) delivered in PDF (site license). The post completion cost of the report is US\$28,500.

Hard copies of the study can be made available at cost to subscriber. Please contact TCGR for pricing details.

Please enter our order for the *"Intelligence Report 2023 - Exec Deck"* PowerPoint presentation for an additional \$4,500 (requires concurrent subscription to report). This includes a 2-hour presentation by the TCGR report team, to be conducted via online seminar with time for subscriber-specific Q&A. Additional fees apply for on-site presentation.

In signing this order form, our company agrees to hold this report confidential and not make it available to subsidiaries unless a controlling interest (>50%) exists.

Signature	Shipping Address (No P.O. Boxes)
Date	
Name	City
Title	State/Country
Company	Postal Code/Zip
Billing Address	Phone
	Email
(Pennsylvania companies must furnish tax ex	empt number or be subject to state sales tax.)

(Pennsylvania companies must furnish tax exempt number or be subject to state sales tax.)

This report and our study findings are sold for the exclusive use of the client companies and their employees only. No other use, duplication or publication of this report or any part contained herein, is permitted without the express written consent of

> THE CATALYST GROUP RESOURCES, INC. Gwynedd Office Park • P.O. Box 680 • Spring House, PA 19477 – USA Tel: +1.215.628.4447 • tcgr@catalystgrp.com • www.catalystgrp.com

INTELLIGENCE REPORT: Business Shifts in the Global Catalytic Process Industries, 2023 – 2029

CONTENTS

EX	CECUTIVE SUMMARY	1
Α.	OVERALL EXECUTIVE MESSAGE	1
B.	COMMERCIAL OPPORTUNITIES, COMPETITIVE LANDSCAPE, AND STRATEGIC RECOMMENDATI	ONS 2
C.	KEY INDUSTRY TAKEAWAYS	6
1	1. Refining Catalysts	6
2	2. Petrochemical/Chemical Catalysts	9
3	3. Polymerization Catalysts	12
Z	4. Environmental Catalysts	15
D.	CRITICAL MATERIALS FOR CATALYSIS IN THE ENERGY TRANSITION	17
E.	CONCLUSION	19
F.	REFERENCES	19

SECTION I. INTRODUCTION		21
Α.	BACKGROUND	21
B.	A NEW INTELLIGENCE REPORT – WHAT'S CHANGED AND WHY?	22
1	. Model Enhancements	23
С.	SCOPE, OBJECTIVES, AND METHODOLOGY	24
D.	SOURCES OF INFORMATION	25
E.	DEFINITIONS	26

SEC	ECTION II. REFINING CATALYSTS		
Α.	MARKET SIZE AND GROWTH	28	
1.	. FCC, including co-processing	29	
2.	. Naphtha Reforming	30	
3.	. Hydrotreating/Hydrorefining	30	
4.	. Distillate Hydrocracking/Resid Hydrocracking	31	
5.	. Alkylation	32	
6.	. Fuels from Biomass	33	

B. CO	OMPETITIVE PERSPECTIVES	35
1.	FCC, including co-processing	35
a.	BASF	35
b.	Grace	36
c.	Ketjen (Albemarle)	36
d.	UOP	36
2.	Naphtha Reforming	37
a.	UOP	37
b.	Axens	37
3.	Hydrotreating/Hydrorefining	37
a.	Ketjen	38
b.	Торѕое	38
с.	Shell	39
d.	ART	39
e.	Axens	40
f.	UOP	40
4.	Distillate Hydrocracking/Resid Hydrocracking	40
a.	ART	41
b.	UOP	42
с.	Торѕое	42
d.	Shell	43
e.	Axens	44
f.	Clariant	44
g.	Other	44
5.	Alkylation and Iso-olefins	44
a.	Elessent [™] STRATCO [®]	45
b.	UOP/Chevron ISOALKY TM	45
с.	Lummus Technologies AlkyClean [®] /CDAlky [®]	45
d.	ExxonMobil ALKEMAX™	45
e.	Axens	45
6.	Fuels from Biomass	45
a.	Neste	46
b.	Axens	46
c.	Торѕое	46
d.	Honeywell/UOP	47
e.	Shell	47
f.	ExxonMobil	48

	g.	Chevron Lummus Global (CLG)	48
С.	KEY	TECHNOLOGY PROGRESS AND COMMERCIAL/R&D DRIVERS	49
1.	Ke	ey Technology Progress	49
	a.	FCC, including co-processing	49
	b.	Naphtha Reforming	50
	с.	Hydrotreating/Hydrorefining	50
	d.	Distillate Hydrocracking/Resid Hydrocracking	50
	e.	Alkylation and Iso-olefins	51
	f.	Fuels from Biomass	51
2.	C	ommercial Drivers	52
	a.	Near-term Demand for Premium Fossil Fuels	52
	b.	Pivot Economics for Chemicals	53
	с.	Decarbonization: Reduction in Scope 1 Footprint	54
	d.	Emerging Circular Economy Dynamics	54
3.	Ra	&D Drivers	55
	a.	New Materials Applications (MOF's, lamellar nanostructures, etc.)	55
	b.	Advanced Analytics and Modelling of Catalysis at Atomic Scales	56
	с.	Decarbonization Technologies for Biomass Conversion	56
	d.	Decarbonization Technologies for Refining Processes	57
	e.	Waste Plastics Conversion Technologies for Chemicals and Fuels	57
D.	SUN	IMARY	58
E.	REFI	ERENCES	58

SECTION III. PETROCHEMICAL AND CHEMICAL CATALYSTS		
A. MARKET SIZE AND GROWTH	64	
1. Total Catalyst Market Demand	64	
2. Synthesis Gas Production	65	
a. Synthesis Gas Derivatives (Methanol/DME, Ammonia, Hydrogen, F-T, Others)	65	
b. Catalyst Demand	67	
c. Changes to How we Evaluate the Syngas Catalyst Market	68	
3. Aromatics	69	
a. Market Trends	69	
b. Catalyst Demand	70	
4. Organic Synthesis	70	
a. Market Trends	70	
b. Catalyst Demand	71	
5. Oxidation	72	

	a.	Market Trends	72
	b.	Catalyst Demand	73
6	5.	Hydrogenation	73
	a.	Market Trends	73
	b.	Catalyst Demand	74
7	′ .	Dehydrogenation	74
	a.	Market Trends	74
	b.	Catalyst Demand	75
8	8.	Understanding the Size of the Enzyme Market	76
ç).	Chemicals from Biomass	76
В.	CC	OMPETITIVE PERSPECTIVES	78
1	•	Catalyst Supplier Activities	78
	a.	Strategies for The Energy Transition & Net Zero and Circular Economy	78
	b.	Key Product Introductions	80
	c.	Transactions Activity (M&A, Divestments, JV's)	80
	d.	Market Share Trends	81
	e.	Recent Successes & Failures	82
2	<u>)</u> .	SWOT Analysis & Summary	82
С.	KE	Y TECHNOLOGY PROGRESS DRIVERS	83
1	•	Synthesis Gas Production	83
	a.	Fossil Fuel Based Routes	83
	b.	Biobased Routes	84
	c.	Electrolysis (Green Syngas)	85
2	2.	Synthesis Gas Derivatives	85
	a.	Ammonia	85
	b.	Methanol/DME & Derivatives	85
	с.	F-T Liquids	86
	d.	Methane	86
	e.	Others	86
3	8.	On-purpose Olefins (Dehydrogenation)	86
	a.	Nylons	87
Z	ŀ.	Oxidation	87
	a.	Ethylene Oxide/Propylene Oxide and Derivatives	87
	b.	Purified Terephthalic Acid (PTA) and Derivatives	89
	с.	Vinyl Acetate Monomer (VAM)	89
5		Hydrogenations	90
	a.	Cyclohexane	90

	b.	Purifications	90
6.	О	rganic Synthesis	91
	a.	Linear Alpha Olefins	91
	b.	Oxo-aldehydes	91
	c.	Methyl methacrylate (MMA)	91
	d.	Vinyl Chloride Monomer (VCM)	91
7.	С	ther Chemicals from Biomass (not covered in Sections C.1C.3)	92
8.	С	ther Noteworthy Technology Developments	93
9.	C	ommercial Drivers	93
	a.	Market Sector Trends	93
	b.	Market Share Growth	94
	с.	Cost Management	94
	d.	Portfolio Optimisation	95
10).	R&D Drivers	95
	a.	Low Carbon Products	95
	b.	Operational Efficiency	96
	с.	Resource Criticality	96
D.	SUN	IMARY	96
E.	REF	ERENCES	97

SECTION IV. POLYME	SECTION IV. POLYMERIZATION CATALYSTS		
A. MARKET SIZE AND G	ROWTH	108	
1. Resin and Catalyst I	Market	108	
2. Plastic Recycling Im	pact on Catalyst Demand	111	
3. Polyolefins (PE, PP)		114	
a. Polyethylene		114	
b. Polypropylene		116	
4. Other Plastics and F	Rubbers	118	
a. Other Volume Pla	astics (PVC, PS and ABS)	118	
b. Engineering Ther	moplastics and Rubbers	118	
5. Bioplastics		119	
B. COMPETITIVE PERSPE	ECTIVES	122	
1. Focus on PO Cataly	st and Technology Market	122	
2. Other Plastics and F	Rubbers	132	
3. Bioplastics		132	
C. KEY TECHNOLOGY PR	ROGRESS AND COMMERCIAL/R&D DRIVERS	134	
1. Key Commercial/R8	D Drivers	134	

147

2.	K	ey Technology Progress	135
	a.	Polyolefins	135
	b.	Other Plastics and Rubbers	138
	с.	Bioplastics	139
D.	SUN	IMARY	141
E.	REF	ERENCES	142

SECTION V. ENVIRONMENTAL CATALYSTS

Α.	SE	ECTION A: MARKET SIZE AND GROWTH	148
1.	•	Introduction	148
2.		Electric Vehicle Penetration (BEV/PHEV)	148
3.		Regulations	149
	a.	Light-duty GHG and Electrification	150
	b.	Light-duty Criteria Pollutant Regulations	152
	c.	Heavy-duty GHG Regulations	153
	d.	Heavy-duty Low NOx Regulations	155
	e.	Marine	157
	f.	Motorcycles	157
	g.	Stationary	157
4.		Global Catalyst Market Overview	157
	a.	Light Duty Vehicles	158
	b.	Battery electric vehicle penetration	158
	c.	Medium and Heavy-Duty Vehicles	159
	d.	Non-road	160
	e.	Locomotive and Marine	160
	f.	Motorcycles (2-and 3-wheel Vehicles)	160
	g.	Stationary Catalyst Markets	160
	h.	Power Generation	162
	i.	Industrial	162
В.	С	OMPETITIVE PERSPECTIVES	162
1.		BASF	162
2.		Johnson Matthey	163
3.		Umicore	163
4.		Cataler	163
С.	KI	EY TECHNOLOGY PROGRESS AND COMMERCIAL/R&D DRIVERS	163
1.		Light-Duty Vehicles	163
	a.	Technology	163

179

E.	REFERENCES	175
D.	SUMMARY	174
	b. R&D Drivers	173
	a. Technology	168
2.	Heavy-Duty Vehicles	168
	b. R&D Drivers	167

SECTION VI. SPECIAL FEATURE – CRITICAL MATERIALS FOR CATALYSIS IN THE ENERGY TRANSITION

А.	H	OW CATALYSIS IS MEETING THE NEEDS OF THE ENERGY TRANSITION	180
1.		Energy Transition Segments (e.g., electrolysis, hydrogen, syngas)	180
	a.	Reducing Metal Criticality in Fuel Cells	180
	b.	Reducing Metal Criticality in Electrolysers	182
	c.	Co-Electrolysis for Syngas Flexibility and Challenging RWGS	185
	d.	Metal/Material Criticality Assessment	189
	e.	Impact of Technology Development	189
2.		Energy Storage (Ammonia, Methanol, Others)	189
	a.	Viability and Applicability of Chemical Energy Storage Vectors	189
	b.	Catalysis for Production of Key Energy Storage Vectors	190
	c.	Metal/Material Criticality Assessment	192
3.		Plastics Recycling	192
	a.	How Catalysts Can Help Scale Plastics Recycling	192
	b.	Beyond rPET – Catalysis for Plastics Circularity Across Value Chains	192
	c.	Metal/Material Criticality Assessment	192
4.		Water/Wastewater	193
	a.	Existing and Emerging Pollutants	193
	b.	Challenges to Future Water Treatment	193
	c.	Opportunities for Catalysis in Water Pollution Control	194
	d.	Metal/Material Criticality Assessment	194
В.	Tł	HE STATUS OF CRITICAL MATERIALS FOR CATALYSIS	194
1.		Map of Critical Materials Employed for Catalysis (Actives)	194
2.		Map of Critical Materials Employed for Catalysis (Supports & Other)	198
3.		Managing Competition for Catalysis vs. Energy Metals/Materials	198
4.		Opportunities for Diversifying Catalysis Metals and Materials	199
С.	Q	UANTIFYING THE NEW MARKET	200
1.		Outlook on Platinum Group Metal Catalyst Demand	200
2.		Outlook on Key Base/Battery Metal Catalyst Demand	202

217

1.	Which NetZero Approaches Are Likely to Succeed/Be Impactful?	207
2.	How will Energy and Feedstock Security Direct Progress?	207
3.	Are NetZero Pathways Congruent with Sustainable Development Goals (SDG)?	208
4.	How Can Catalysis Be Employed for an Optimised NetZero Technology Portfolio?	208
5.	What Strategies are Needed to Manage Metal/Material Criticality?	209
6.	Summary and Conclusions	210
E. R	REFERENCES	211

SECTION VII. FORWARD LOOKING AND OVERARCHING STRATEGIC ANALYSIS AND BUSINESS RECOMMENDATIONS

Α.		(CA	ATALYST INDUSTRY SEGMENT ANALYSIS	217
1	•			Refining Catalysts	217
		ć	э.	Opportunities and New Technologies to Watch	218
		k	Э.	Technologies that Will Weather the Energy Transition	219
		C		Threats and Technologies Facing Headwinds	220
2	•			Petrochemical and Chemical Catalysts	221
		ć	э.	Regional Economic and Regulatory Impacts	221
		k	Э.	Business and Market Strategies	223
		C		Energy Transition Strategies	224
3	•			Polymerization Catalysts	224
		ć	.	Which Feedstock: Oil & Gas, Biomass, Wastes or CO ₂ ?	225
		k).	Circular Economy Pushes Plastic Wastes as the New Strategic Delocalized Feedstock	226
		C		Move on Frontier Polymerization Technology as CO_2 -based or Biodegradable Polymers	227
4	•			Environmental	228
В.		(0	OMPETITIVE MARKET SHARES	230
С.		(20	ONCLUDING THOUGHTS	230
D.		F	RE	FERENCES	232
AP	P)	E٢	NDIX – DATA TABLES	233
EXE	C	21	UT	TIVE SUMMARY	233
SEC	Т	1	0	N II – REFINING CATALYSTS	233
SEC	Т	1	0	N III – PETROCHEMICAL/CHEMICAL CATALYSTS	240
SEC	Т	1	0	N IV – POLYMERIZATION CATALYSTS	242
SECTION V - ENVIRONMENTAL CATALYSTS			244		

| TABLE OF CONTENTS, FIGURES, TABLES

FIGURES

EXECUTIVE SUMMARY FIGURES

Figure ES-1.	The Energy and Refining Industry Trilemma	xii
Figure ES-2.	Global Catalyst Industry Market Size and Growth, 2021-2029 (\$ mil)	3
Figure ES-3.	Global Catalyst Market Shares, 2021	4
Figure ES-4.	Global Refining Catalyst Market, 2021-2029 (\$ mil)	8
Figure ES-5.	Global Petrochemical/Chemical Catalyst Market, 2021-2029 (\$ mil)	9
Figure ES-6.	Global Polymerization Catalyst Market, 2021-2029 (\$ mil)	13
Figure ES-7.	Global Environmental Catalyst Market, 2021-2029 (\$ mil)	16
Figure ES-8.	US DOE Short- and medium-term criticality risks for energy important metals and	
	materials	18

SECTION II FIGURES

Figure II-1.	Global Refining Catalyst Market, 2021-2029 (\$ mil)	28
Figure II-2.	FCC Catalyst Market, by Type (\$ mil)	29
Figure II-3.	FCC Catalyst Market, by Region (\$ mil)	29
Figure II-4.	Reforming Catalyst Market, by Region (\$ mil)	30
Figure II-5.	Hydrotreating Catalyst Market, by Region (\$ mil)	31
Figure II-6.	Hydrotreating Catalyst Market, by Type (\$ mil)	31
Figure II-7.	Hydrocracking Catalyst Market, by Type	32
Figure II-8.	Hydrocracking Catalyst Market, by Region (\$ mil)	32
Figure II-9.	Alkylation Catalyst Market, by Region (\$ mil)	33
Figure II-10	Market for RD/SAF Catalysts, 2021 (\$ mil)	34
Figure II-11	Regional Market Demand for FAME Biodiesel Catalysts, 2021 (\$ mil)	35
Figure II-12.	Global FCC Catalyst Market Shares 2021	35
Figure II-13.	Global Hydrotreating and Hydrocracking Catalyst Market Shares, 2021	38
Figure II-14.	Shell Catalyst FCC Pretreatment Strategy	39
Figure II-15.	ART Portfolio History of RDS Catalysts	39
Figure II-16.	UOP Hydrotreating Catalyst Line	40
Figure II-17.	ART Portfolio of Hydrocracking Catalysts	41
Figure II-18.	ART Ebullated Bed Catalyst Portfolio	41
Figure II-19.	Honeywell UOP Hydrocracking Catalysts	42
Figure II-20.	Topsoe Hydrocracking Series	42
Figure II-21.	Shell Hydrocracking Catalyst Portfolio	43

Figure II-22.	US D4 RIN Pricing, 2009 – 2023	53
Figure II-23.	CO ₂ Emissions Involved in Hydroprocessing Production vs. Excel® Rejuvenation	55
Figure II-24.	Processing Schematic for Biomass and Plastics Pyrolysis Oils	57

SECTION III FIGURES

Figure III-1.	Total Market for Petrochemical Catalysts, 2021-2029 (\$ mil)	64
Figure III-2.	Market for Catalysts in Syngas and Derivatives, 2021-2029 (\$ mil)	67
Figure III-3	Hydrogen Production by Type, 2021-2029	68
Figure III-4	Syngas Catalyst Market Size by Catalyst Type, 2021-2029	68
Figure III-5.	Market for Catalysts in Aromatics, 2021-2029 (\$ mil)	70
Figure III-6.	Market for Catalysts in Organic Synthesis, 2021-2029 (\$ mil)	71
Figure III-7.	Market for Oxidation Catalysts, 2021-2029 (\$ mil)	73
Figure III-8.	Market for Hydrogenation Catalysts, 2021-2029 (\$ mil)	74
Figure III-9.	Market for Dehydrogenation Catalysts, 2021-2029 (\$ mil)	75
Figure III-10.	Key chemical conversions in the production of Nylon 6, Nylon-6,6 and Nylon-6,12	87
Figure III-11.	Process Scheme for CTH of glycerol to propylene glycol and byproducts	89
Figure III-12.	KBR/Showa Denko block flow diagram for production of VAM via ethylene acetoxylation	90
Figure III-13.	Advanced Economies: Manufacturing Vs. Motor Vehicles Production	94

SECTION IV FIGURES

Figure IV-1.	Worldwide Catalyst Market – Polymerization, 2021-2029 (US \$ MIL)	110
Figure IV-2.	Global Polymerization Catalyst Markets By Polymer and Catalyst Type: 2021-2029 (\$US MIL)	111
Figure IV-3.	By 2040 up to 30% of Polymer Demand Could Be Based on Polymer Recycling	112
Figure IV-4.	Key Plastics Recycle Capacities (million tons)	112
Figure IV-5.	Global PE Supply/Demand Balance	114
Figure IV-6.	Global Metallocene Polyethylene (mPE) Resin Consumption, by Polymer, 2021-2029 (KMT)	115
Figure IV-7.	Global PP Supply/Demand Balance	116
Figure IV-8.	Global Metallocene Polypropylene (mPP) Resin Consumption, by Polymer, 2021-2029 KMT)	117
Figure IV-9.	PET Production/Recycling/Disposal	119
Figure IV-10.	Bio-Polymer Production Routes	120
Figure IV-11.	Bio-Plastics Value Chain	122
Figure IV-12.	PE/PP Catalysts 2021 Global Merchant Market Shares (USD %)	124
Figure IV-13.	SWOT Integrated Vs. Independent Catalyst Suppliers	127
Figure IV-14.	Recent Market M&A and Disruptions	131

Figure IV-15.	Biopolymer Technology Readiness	133
Figure IV-16.	Plastic Waste Chemical Recycling Key Technology & Providers	136

SECTION V FIGURES

Figure V-1.	Regional sales of light-duty vehicles with an internal combustion engine, 2021-2029	148
Figure V-2.	Regional sales of battery electric light-duty vehicles, 2021-2029	149
Figure V-3.	Summary of the timing of current and future emission standards for light-duty (top) and heavy-duty vehicles (bottom). The standards marked with grey represent non-final standards (either proposals or estimates).	150
Figure V-4.	CO_2 standards for passenger cars in the US, Europe and China	150
Figure V-5.	CAFE standards proposed by NHTSA covering US LDVs MY 2027 – 2032 will require a ~ 3.5% reduction in fuel consumption on average each year.	151
Figure V-6.	California's mandate for ZEV and PHEV share of new vehicle sales	151
Figure V-7.	Summary of proposed Euro 7 standards for LDVs.	153
Figure V-8.	Summary of proposed European CO ₂ standards for HDVs	153
Figure V-9.	Summary of proposed Euro 7 standards for HDVs.	156
Figure V-10.	Global catalyst market for pollution control for transport, power, and industrial sectors, 2021-2029 (\$ mil)	157
Figure V-11.	Light-duty vehicle catalyst market by region, 2021 – 2029 (\$ mil)	158
Figure V-12.	Range of Market Forecasts for Light Duty BEV Sales, 2020-2030	159
Figure V-13.	Catalyst market for medium and heavy-duty vehicles by region, 2021 – 2029 (\$ mil)	160
Figure V-14.	Global catalyst market for stationary power applications, 2021-2029 (\$ mil)	161
Figure V-15.	Global catalyst market for stationary industrial applications, 2021-2029 (\$ mil)	161
Figure V-16.	Global environmental catalyst market shares, 2021	162
Figure V-17.	Fleet averaged CO_2 emissions from passenger cars in Europe and the EV share	164
Figure V-18.	After-treatment system layouts for LD diesel (left) and gasoline (right) vehicles.	165
Figure V-19.	Demonstration of advanced low NOx technologies on a 48V mild hybrid LD diesel	166
Figure V-20.	Platinum and Palladium used in new vehicles in Europe. Taken from the JRC database	167
Figure V-21.	After-treatment systems for Euro 7 and US post-2027 regulations	170
Figure V-22.	Results from the SWRI study demonstrating ultra-low NOx emissions	172

SECTION VI FIGURES

Figure VI-1.	Basic Schematic of a Hydrogen Fuel Cell	180
Figure VI-2.	Thrifting Expectations for a PEMFC Passenger Car	182
Figure VI-3.	Key Technologies for Water Electrolysis for Hydrogen Production	182
Figure VI-4.	Schematic of a PEMEL Including Layered Cell Structure	183

Figure VI-5.	The impact of thrifting and recycling on PEM capacity, based on 1.5 tonnes p.a. iridium supply	185
Figure VI-6.	Biogas Upgrading and Co-Electrolysis of Water and Biogenic CO_2 Followed by Methanation to Bio-SNG	186
Figure VI-7.	Structure of a Solid Oxide Electrolysis Material and Cell	187
Figure VI-8.	US DOE Short- and medium-term criticality risks for energy important metals and materials	195
Figure VI-9.	Amount of NCM metals in different battery formulations	203
Figure VI-10.	Demand forecasts for key battery metals	204

SECTION VII FIGURES

The Energy and Refining Industry Trilemma	218
Typical Life Span Ranges of Plastics Use in Different Applications	225
Bioplastics Biodegradation in Various Environments	227
Global Catalyst Market Shares, 2021	231
	Typical Life Span Ranges of Plastics Use in Different Applications Bioplastics Biodegradation in Various Environments

TABLES

EXECUTIVE SUMMARY TABLES

Table ES-1.	Key Refining Catalyst Producers	7
Table ES-2.	Key Petrochemical/Chemical Catalyst Producers and Catalytic Process Licensors	11
Table ES-3	Key Polymerization Catalyst Industry Producers	14

SECTION II TABLES

Table II-1.	Topsoe Catalysts for Hydroprocessing Renewable	46
Table II-2.	Overview of Topsoe Dewaxing Catalysts	47
Table II-3.	Shell Portfolio of SRC Catalysts	47
Table II-4.	ENDEAVOR™ CATALYSTS	49

SECTION III TABLES

Table III-1.	Biobased Chemicals Process Development	77
Table III-2.	Key Multinational Catalyst Suppliers, Energy Transition Products and Other ESG Policies	79
Table III-3.	Catalyst Manufacturers PGM Refinery Sites and Key Investments	81
Table III-4.	Catalyst Producer SWOT Analysis	83

Table III-5.	Syngas Production Stage and Respective Catalysts	84
--------------	--	----

SECTION IV TABLES

Table IV-1.	Plastic Resins Average Annual Growth Rates, 2023-2029	109
Table IV-2.	Impact of Mechanically Recycled PET on Fresh Catalyst Demand	113
Table IV-3.	Bio-polymers Production Capacity by Type 2022-2029 (000's MT %)	121
Table IV-4.	Suppliers of PO Catalyst Components & Initiators	123
Table IV-5.	Global PO Catalyst System Components & non-Merchant Catalysts Value 2023 (USD Million)	124
Table IV-6.	PE/PP Catalyst Production Sites	125
Table IV-7.	PO Catalyst/Process Offerings, Services & Synergies	128
Table IV-8.	PE/PP Licensors by Process Technology	129
Table IV-9.	Licensed Capacity by Major Merchant PO Technology Licensors (million tons/yr 2022)	130
Table IV-10.	PE/PP Licensed Capacity by Major Merchant Technology Licensors (million tons/yr. 2020-2022)	130
Table IV-11.	Cooperation for Plastic Chemical Recycling Initiatives in Progress	137
Table IV-12.	Cooperation for Bio PE/PP Production, Routes and Sustainability Targets	140
Table IV-13.	Cooperation for Bio-plastics Initiatives in Progress	140

SECTION V TABLES

Table V-1.	Market share of battery electric vehicles (BEVs) by region.	149
Table V-2.	ZEV penetration projected in the GHG Phase 3 proposal	154
Table V-3.	Share of ZEVs in HD vehicle sales as mandated by the ACT rule in California	154
Table V-4.	Current and MY 2027+ EPA standards for HD compression-ignition engines	155
Table V-5.	Engine improvements discussed at recent conferences	164

SECTION VI TABLES

Table VI-1.	Main type of fuel cell systems, features and applications	181
Table VI-2.	Technical parameters and required PGM demand for PEMEL in conventional, and newly developed systems	184
Table VI-3.	Summary of main parameters for current water electrolysis technologies	188
Table VI-4.	Commercially Available Ammonia Cracking Units	191
Table VI-5.	PGM Catalysts by Sector and Outlook	197
Table VI-6.	Platinum Group Metal (PGM) Supply, Demand and Pricing Dynamics	201
Table VI-7.	Battery Metal Supply, Demand and Pricing Dynamics	205

The Catalyst Group Resources

CONTACT US 750 N. BETHLEHEM PIKE | P.O. BOX 680 SPRING HOUSE, PA 19477 USA +1 215 628 4447 tcgr@catalystgrp.com www.catalystgrp.com